1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
//! CSS angle values.

use std::f64::consts::*;

use cssparser::{Parser, Token};
use float_cmp::approx_eq;

use crate::error::*;
use crate::parsers::{finite_f32, Parse};

#[derive(Debug, Copy, Clone, PartialEq)]
pub struct Angle(f64);

impl Angle {
    pub fn new(rad: f64) -> Angle {
        Angle(Angle::normalize(rad))
    }

    pub fn from_degrees(deg: f64) -> Angle {
        Angle(Angle::normalize(deg.to_radians()))
    }

    pub fn from_vector(vx: f64, vy: f64) -> Angle {
        let rad = vy.atan2(vx);

        if rad.is_nan() {
            Angle(0.0)
        } else {
            Angle(Angle::normalize(rad))
        }
    }

    pub fn radians(self) -> f64 {
        self.0
    }

    pub fn bisect(self, other: Angle) -> Angle {
        let half_delta = (other.0 - self.0) * 0.5;

        if FRAC_PI_2 < half_delta.abs() {
            Angle(Angle::normalize(self.0 + half_delta - PI))
        } else {
            Angle(Angle::normalize(self.0 + half_delta))
        }
    }

    //Flips an angle to be 180deg or PI radians rotated
    pub fn flip(self) -> Angle {
        Angle::new(self.radians() + PI)
    }

    // Normalizes an angle to [0.0, 2*PI)
    fn normalize(rad: f64) -> f64 {
        let res = rad % (PI * 2.0);
        if approx_eq!(f64, res, 0.0) {
            0.0
        } else if res < 0.0 {
            res + PI * 2.0
        } else {
            res
        }
    }
}

// angle:
// https://www.w3.org/TR/SVG/types.html#DataTypeAngle
//
// angle ::= number ("deg" | "grad" | "rad")?
//
impl Parse for Angle {
    fn parse<'i>(parser: &mut Parser<'i, '_>) -> Result<Angle, ParseError<'i>> {
        let angle = {
            let loc = parser.current_source_location();

            let token = parser.next()?;

            match *token {
                Token::Number { value, .. } => {
                    let degrees = finite_f32(value).map_err(|e| loc.new_custom_error(e))?;
                    Angle::from_degrees(f64::from(degrees))
                }

                Token::Dimension {
                    value, ref unit, ..
                } => {
                    let value = f64::from(finite_f32(value).map_err(|e| loc.new_custom_error(e))?);

                    match unit.as_ref() {
                        "deg" => Angle::from_degrees(value),
                        "grad" => Angle::from_degrees(value * 360.0 / 400.0),
                        "rad" => Angle::new(value),
                        "turn" => Angle::from_degrees(value * 360.0),
                        _ => {
                            return Err(loc.new_unexpected_token_error(token.clone()));
                        }
                    }
                }

                _ => return Err(loc.new_unexpected_token_error(token.clone())),
            }
        };

        Ok(angle)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn parses_angle() {
        assert_eq!(Angle::parse_str("0").unwrap(), Angle::new(0.0));
        assert_eq!(Angle::parse_str("15").unwrap(), Angle::from_degrees(15.0));
        assert_eq!(
            Angle::parse_str("180.5deg").unwrap(),
            Angle::from_degrees(180.5)
        );
        assert_eq!(Angle::parse_str("1rad").unwrap(), Angle::new(1.0));
        assert_eq!(
            Angle::parse_str("-400grad").unwrap(),
            Angle::from_degrees(-360.0)
        );
        assert_eq!(
            Angle::parse_str("0.25turn").unwrap(),
            Angle::from_degrees(90.0)
        );

        assert!(Angle::parse_str("").is_err());
        assert!(Angle::parse_str("foo").is_err());
        assert!(Angle::parse_str("300foo").is_err());
    }

    fn test_bisection_angle(
        expected: f64,
        incoming_vx: f64,
        incoming_vy: f64,
        outgoing_vx: f64,
        outgoing_vy: f64,
    ) {
        let i = Angle::from_vector(incoming_vx, incoming_vy);
        let o = Angle::from_vector(outgoing_vx, outgoing_vy);
        let bisected = i.bisect(o);
        assert!(approx_eq!(f64, expected, bisected.radians()));
    }

    #[test]
    fn bisection_angle_is_correct_from_incoming_counterclockwise_to_outgoing() {
        // 1st quadrant
        test_bisection_angle(FRAC_PI_4, 1.0, 0.0, 0.0, 1.0);

        // 2nd quadrant
        test_bisection_angle(FRAC_PI_2 + FRAC_PI_4, 0.0, 1.0, -1.0, 0.0);

        // 3rd quadrant
        test_bisection_angle(PI + FRAC_PI_4, -1.0, 0.0, 0.0, -1.0);

        // 4th quadrant
        test_bisection_angle(PI + FRAC_PI_2 + FRAC_PI_4, 0.0, -1.0, 1.0, 0.0);
    }

    #[test]
    fn bisection_angle_is_correct_from_incoming_clockwise_to_outgoing() {
        // 1st quadrant
        test_bisection_angle(FRAC_PI_4, 0.0, 1.0, 1.0, 0.0);

        // 2nd quadrant
        test_bisection_angle(FRAC_PI_2 + FRAC_PI_4, -1.0, 0.0, 0.0, 1.0);

        // 3rd quadrant
        test_bisection_angle(PI + FRAC_PI_4, 0.0, -1.0, -1.0, 0.0);

        // 4th quadrant
        test_bisection_angle(PI + FRAC_PI_2 + FRAC_PI_4, 1.0, 0.0, 0.0, -1.0);
    }

    #[test]
    fn bisection_angle_is_correct_for_more_than_quarter_turn_angle() {
        test_bisection_angle(0.0, 0.1, -1.0, 0.1, 1.0);

        test_bisection_angle(FRAC_PI_2, 1.0, 0.1, -1.0, 0.1);

        test_bisection_angle(PI, -0.1, 1.0, -0.1, -1.0);

        test_bisection_angle(PI + FRAC_PI_2, -1.0, -0.1, 1.0, -0.1);
    }
}