1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
use cssparser::Parser;
use markup5ever::{expanded_name, local_name, namespace_url, ns};

use crate::document::AcquiredNodes;
use crate::drawing_ctx::DrawingCtx;
use crate::element::{set_attribute, ElementTrait};
use crate::error::*;
use crate::node::{CascadedValues, Node};
use crate::parse_identifiers;
use crate::parsers::{NumberOptionalNumber, Parse, ParseValue};
use crate::properties::ColorInterpolationFilters;
use crate::rect::IRect;
use crate::rsvg_log;
use crate::session::Session;
use crate::surface_utils::{
    shared_surface::{ExclusiveImageSurface, SurfaceType},
    ImageSurfaceDataExt, Pixel, PixelOps,
};
use crate::util::clamp;
use crate::xml::Attributes;

use super::bounds::BoundsBuilder;
use super::context::{FilterContext, FilterOutput};
use super::{
    FilterEffect, FilterError, FilterResolveError, Primitive, PrimitiveParams, ResolvedPrimitive,
};

/// Limit the `numOctaves` parameter to avoid unbounded CPU consumption.
///
/// https://drafts.fxtf.org/filter-effects/#element-attrdef-feturbulence-numoctaves
const MAX_OCTAVES: i32 = 9;

/// Enumeration of the tile stitching modes.
#[derive(Debug, Default, Clone, Copy, Eq, PartialEq, Hash)]
enum StitchTiles {
    Stitch,
    #[default]
    NoStitch,
}

/// Enumeration of the noise types.
#[derive(Debug, Default, Clone, Copy, Eq, PartialEq, Hash)]
enum NoiseType {
    FractalNoise,
    #[default]
    Turbulence,
}

/// The `feTurbulence` filter primitive.
#[derive(Default)]
pub struct FeTurbulence {
    base: Primitive,
    params: Turbulence,
}

/// Resolved `feTurbulence` primitive for rendering.
#[derive(Clone)]
pub struct Turbulence {
    base_frequency: NumberOptionalNumber<f64>,
    num_octaves: i32,
    seed: f64,
    stitch_tiles: StitchTiles,
    type_: NoiseType,
    color_interpolation_filters: ColorInterpolationFilters,
}

impl Default for Turbulence {
    /// Constructs a new `Turbulence` with empty properties.
    #[inline]
    fn default() -> Turbulence {
        Turbulence {
            base_frequency: NumberOptionalNumber(0.0, 0.0),
            num_octaves: 1,
            seed: 0.0,
            stitch_tiles: Default::default(),
            type_: Default::default(),
            color_interpolation_filters: Default::default(),
        }
    }
}

impl ElementTrait for FeTurbulence {
    fn set_attributes(&mut self, attrs: &Attributes, session: &Session) {
        self.base.parse_no_inputs(attrs, session);

        for (attr, value) in attrs.iter() {
            match attr.expanded() {
                expanded_name!("", "baseFrequency") => {
                    set_attribute(&mut self.params.base_frequency, attr.parse(value), session);
                }
                expanded_name!("", "numOctaves") => {
                    set_attribute(&mut self.params.num_octaves, attr.parse(value), session);
                    if self.params.num_octaves > MAX_OCTAVES {
                        let n = self.params.num_octaves;
                        rsvg_log!(
                            session,
                            "ignoring numOctaves={n}, setting it to {MAX_OCTAVES}"
                        );
                        self.params.num_octaves = MAX_OCTAVES;
                    }
                }
                // Yes, seed needs to be parsed as a number and then truncated.
                expanded_name!("", "seed") => {
                    set_attribute(&mut self.params.seed, attr.parse(value), session);
                }
                expanded_name!("", "stitchTiles") => {
                    set_attribute(&mut self.params.stitch_tiles, attr.parse(value), session);
                }
                expanded_name!("", "type") => {
                    set_attribute(&mut self.params.type_, attr.parse(value), session)
                }
                _ => (),
            }
        }
    }
}

// Produces results in the range [1, 2**31 - 2].
// Algorithm is: r = (a * r) mod m
// where a = 16807 and m = 2**31 - 1 = 2147483647
// See [Park & Miller], CACM vol. 31 no. 10 p. 1195, Oct. 1988
// To test: the algorithm should produce the result 1043618065
// as the 10,000th generated number if the original seed is 1.
const RAND_M: i32 = 2147483647; // 2**31 - 1
const RAND_A: i32 = 16807; // 7**5; primitive root of m
const RAND_Q: i32 = 127773; // m / a
const RAND_R: i32 = 2836; // m % a

fn setup_seed(mut seed: i32) -> i32 {
    if seed <= 0 {
        seed = -(seed % (RAND_M - 1)) + 1;
    }
    if seed > RAND_M - 1 {
        seed = RAND_M - 1;
    }
    seed
}

fn random(seed: i32) -> i32 {
    let mut result = RAND_A * (seed % RAND_Q) - RAND_R * (seed / RAND_Q);
    if result <= 0 {
        result += RAND_M;
    }
    result
}

const B_SIZE: usize = 0x100;
const PERLIN_N: i32 = 0x1000;

#[derive(Clone, Copy)]
struct NoiseGenerator {
    base_frequency: (f64, f64),
    num_octaves: i32,
    stitch_tiles: StitchTiles,
    type_: NoiseType,

    tile_width: f64,
    tile_height: f64,

    lattice_selector: [usize; B_SIZE + B_SIZE + 2],
    gradient: [[[f64; 2]; B_SIZE + B_SIZE + 2]; 4],
}

#[derive(Clone, Copy)]
struct StitchInfo {
    width: usize, // How much to subtract to wrap for stitching.
    height: usize,
    wrap_x: usize, // Minimum value to wrap.
    wrap_y: usize,
}

impl NoiseGenerator {
    fn new(
        seed: i32,
        base_frequency: (f64, f64),
        num_octaves: i32,
        type_: NoiseType,
        stitch_tiles: StitchTiles,
        tile_width: f64,
        tile_height: f64,
    ) -> Self {
        let mut rv = Self {
            base_frequency,
            num_octaves,
            type_,
            stitch_tiles,

            tile_width,
            tile_height,

            lattice_selector: [0; B_SIZE + B_SIZE + 2],
            gradient: [[[0.0; 2]; B_SIZE + B_SIZE + 2]; 4],
        };

        let mut seed = setup_seed(seed);

        for k in 0..4 {
            for i in 0..B_SIZE {
                rv.lattice_selector[i] = i;
                for j in 0..2 {
                    seed = random(seed);
                    rv.gradient[k][i][j] =
                        ((seed % (B_SIZE + B_SIZE) as i32) - B_SIZE as i32) as f64 / B_SIZE as f64;
                }
                let s = (rv.gradient[k][i][0] * rv.gradient[k][i][0]
                    + rv.gradient[k][i][1] * rv.gradient[k][i][1])
                    .sqrt();
                rv.gradient[k][i][0] /= s;
                rv.gradient[k][i][1] /= s;
            }
        }
        for i in (1..B_SIZE).rev() {
            let k = rv.lattice_selector[i];
            seed = random(seed);
            let j = seed as usize % B_SIZE;
            rv.lattice_selector[i] = rv.lattice_selector[j];
            rv.lattice_selector[j] = k;
        }
        for i in 0..B_SIZE + 2 {
            rv.lattice_selector[B_SIZE + i] = rv.lattice_selector[i];
            for k in 0..4 {
                for j in 0..2 {
                    rv.gradient[k][B_SIZE + i][j] = rv.gradient[k][i][j];
                }
            }
        }

        rv
    }

    fn noise2(&self, color_channel: usize, vec: [f64; 2], stitch_info: Option<StitchInfo>) -> f64 {
        #![allow(clippy::many_single_char_names)]

        const BM: usize = 0xff;

        let s_curve = |t| t * t * (3. - 2. * t);
        let lerp = |t, a, b| a + t * (b - a);

        let t = vec[0] + f64::from(PERLIN_N);
        let mut bx0 = t as usize;
        let mut bx1 = bx0 + 1;
        let rx0 = t.fract();
        let rx1 = rx0 - 1.0;
        let t = vec[1] + f64::from(PERLIN_N);
        let mut by0 = t as usize;
        let mut by1 = by0 + 1;
        let ry0 = t.fract();
        let ry1 = ry0 - 1.0;

        // If stitching, adjust lattice points accordingly.
        if let Some(stitch_info) = stitch_info {
            if bx0 >= stitch_info.wrap_x {
                bx0 -= stitch_info.width;
            }
            if bx1 >= stitch_info.wrap_x {
                bx1 -= stitch_info.width;
            }
            if by0 >= stitch_info.wrap_y {
                by0 -= stitch_info.height;
            }
            if by1 >= stitch_info.wrap_y {
                by1 -= stitch_info.height;
            }
        }
        bx0 &= BM;
        bx1 &= BM;
        by0 &= BM;
        by1 &= BM;
        let i = self.lattice_selector[bx0];
        let j = self.lattice_selector[bx1];
        let b00 = self.lattice_selector[i + by0];
        let b10 = self.lattice_selector[j + by0];
        let b01 = self.lattice_selector[i + by1];
        let b11 = self.lattice_selector[j + by1];
        let sx = s_curve(rx0);
        let sy = s_curve(ry0);
        let q = self.gradient[color_channel][b00];
        let u = rx0 * q[0] + ry0 * q[1];
        let q = self.gradient[color_channel][b10];
        let v = rx1 * q[0] + ry0 * q[1];
        let a = lerp(sx, u, v);
        let q = self.gradient[color_channel][b01];
        let u = rx0 * q[0] + ry1 * q[1];
        let q = self.gradient[color_channel][b11];
        let v = rx1 * q[0] + ry1 * q[1];
        let b = lerp(sx, u, v);
        lerp(sy, a, b)
    }

    fn turbulence(&self, color_channel: usize, point: [f64; 2], tile_x: f64, tile_y: f64) -> f64 {
        let mut stitch_info = None;
        let mut base_frequency = self.base_frequency;

        // Adjust the base frequencies if necessary for stitching.
        if self.stitch_tiles == StitchTiles::Stitch {
            // When stitching tiled turbulence, the frequencies must be adjusted
            // so that the tile borders will be continuous.
            if base_frequency.0 != 0.0 {
                let freq_lo = (self.tile_width * base_frequency.0).floor() / self.tile_width;
                let freq_hi = (self.tile_width * base_frequency.0).ceil() / self.tile_width;
                if base_frequency.0 / freq_lo < freq_hi / base_frequency.0 {
                    base_frequency.0 = freq_lo;
                } else {
                    base_frequency.0 = freq_hi;
                }
            }
            if base_frequency.1 != 0.0 {
                let freq_lo = (self.tile_height * base_frequency.1).floor() / self.tile_height;
                let freq_hi = (self.tile_height * base_frequency.1).ceil() / self.tile_height;
                if base_frequency.1 / freq_lo < freq_hi / base_frequency.1 {
                    base_frequency.1 = freq_lo;
                } else {
                    base_frequency.1 = freq_hi;
                }
            }

            // Set up initial stitch values.
            let width = (self.tile_width * base_frequency.0 + 0.5) as usize;
            let height = (self.tile_height * base_frequency.1 + 0.5) as usize;
            stitch_info = Some(StitchInfo {
                width,
                wrap_x: (tile_x * base_frequency.0) as usize + PERLIN_N as usize + width,
                height,
                wrap_y: (tile_y * base_frequency.1) as usize + PERLIN_N as usize + height,
            });
        }

        let mut sum = 0.0;
        let mut vec = [point[0] * base_frequency.0, point[1] * base_frequency.1];
        let mut ratio = 1.0;
        for _ in 0..self.num_octaves {
            if self.type_ == NoiseType::FractalNoise {
                sum += self.noise2(color_channel, vec, stitch_info) / ratio;
            } else {
                sum += (self.noise2(color_channel, vec, stitch_info)).abs() / ratio;
            }
            vec[0] *= 2.0;
            vec[1] *= 2.0;
            ratio *= 2.0;
            if let Some(stitch_info) = stitch_info.as_mut() {
                // Update stitch values. Subtracting PerlinN before the multiplication and
                // adding it afterward simplifies to subtracting it once.
                stitch_info.width *= 2;
                stitch_info.wrap_x = 2 * stitch_info.wrap_x - PERLIN_N as usize;
                stitch_info.height *= 2;
                stitch_info.wrap_y = 2 * stitch_info.wrap_y - PERLIN_N as usize;
            }
        }
        sum
    }
}

impl Turbulence {
    pub fn render(
        &self,
        bounds_builder: BoundsBuilder,
        ctx: &FilterContext,
        _acquired_nodes: &mut AcquiredNodes<'_>,
        _draw_ctx: &mut DrawingCtx,
    ) -> Result<FilterOutput, FilterError> {
        let bounds: IRect = bounds_builder.compute(ctx).clipped.into();

        let affine = ctx.paffine().invert().unwrap();

        let seed = clamp(
            self.seed.trunc(), // per the spec, round towards zero
            f64::from(i32::MIN),
            f64::from(i32::MAX),
        ) as i32;

        // "Negative values are unsupported" -> set to the initial value which is 0.0
        //
        // https://drafts.fxtf.org/filter-effects/#element-attrdef-feturbulence-basefrequency
        //
        // Later in the algorithm, the base_frequency gets multiplied by the coordinates within the
        // tile.  So, limit the base_frequency to avoid overflow later.  We impose an arbitrary
        // upper limit for the frequency.  If it crosses that limit, we consider it invalid
        // and revert back to the initial value.  See bug #1115.
        let base_frequency = {
            let NumberOptionalNumber(base_freq_x, base_freq_y) = self.base_frequency;

            let x = if base_freq_x > 32768.0 {
                0.0
            } else {
                base_freq_x.max(0.0)
            };

            let y = if base_freq_y > 32768.0 {
                0.0
            } else {
                base_freq_y.max(0.0)
            };

            (x, y)
        };

        let noise_generator = NoiseGenerator::new(
            seed,
            base_frequency,
            self.num_octaves,
            self.type_,
            self.stitch_tiles,
            f64::from(bounds.width()),
            f64::from(bounds.height()),
        );

        // The generated color values are in the color space determined by
        // color-interpolation-filters.
        let surface_type = SurfaceType::from(self.color_interpolation_filters);

        let mut surface = ExclusiveImageSurface::new(
            ctx.source_graphic().width(),
            ctx.source_graphic().height(),
            surface_type,
        )?;

        surface.modify(&mut |data, stride| {
            for y in bounds.y_range() {
                for x in bounds.x_range() {
                    let point = affine.transform_point(f64::from(x), f64::from(y));
                    let point = [point.0, point.1];

                    let generate = |color_channel| {
                        let v = noise_generator.turbulence(
                            color_channel,
                            point,
                            f64::from(x - bounds.x0),
                            f64::from(y - bounds.y0),
                        );

                        let v = match self.type_ {
                            NoiseType::FractalNoise => (v * 255.0 + 255.0) / 2.0,
                            NoiseType::Turbulence => v * 255.0,
                        };

                        (clamp(v, 0.0, 255.0) + 0.5) as u8
                    };

                    let pixel = Pixel {
                        r: generate(0),
                        g: generate(1),
                        b: generate(2),
                        a: generate(3),
                    }
                    .premultiply();

                    data.set_pixel(stride, pixel, x as u32, y as u32);
                }
            }
        });

        Ok(FilterOutput {
            surface: surface.share()?,
            bounds,
        })
    }
}

impl FilterEffect for FeTurbulence {
    fn resolve(
        &self,
        _acquired_nodes: &mut AcquiredNodes<'_>,
        node: &Node,
    ) -> Result<Vec<ResolvedPrimitive>, FilterResolveError> {
        let cascaded = CascadedValues::new_from_node(node);
        let values = cascaded.get();

        let mut params = self.params.clone();
        params.color_interpolation_filters = values.color_interpolation_filters();

        Ok(vec![ResolvedPrimitive {
            primitive: self.base.clone(),
            params: PrimitiveParams::Turbulence(params),
        }])
    }
}

impl Parse for StitchTiles {
    fn parse<'i>(parser: &mut Parser<'i, '_>) -> Result<Self, ParseError<'i>> {
        Ok(parse_identifiers!(
            parser,
            "stitch" => StitchTiles::Stitch,
            "noStitch" => StitchTiles::NoStitch,
        )?)
    }
}

impl Parse for NoiseType {
    fn parse<'i>(parser: &mut Parser<'i, '_>) -> Result<Self, ParseError<'i>> {
        Ok(parse_identifiers!(
            parser,
            "fractalNoise" => NoiseType::FractalNoise,
            "turbulence" => NoiseType::Turbulence,
        )?)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn turbulence_rng() {
        let mut r = 1;
        r = setup_seed(r);

        for _ in 0..10_000 {
            r = random(r);
        }

        assert_eq!(r, 1043618065);
    }
}