1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
//! Tree nodes, the representation of SVG elements.
//!
//! Librsvg uses the [rctree crate][rctree] to represent the SVG tree of elements.
//! Its [`rctree::Node`] struct provides a generic wrapper over nodes in a tree.
//! Librsvg puts a [`NodeData`] as the type parameter of [`rctree::Node`].  For convenience,
//! librsvg has a type alias [`Node`]` = rctree::Node<NodeData>`.
//!
//! Nodes are not constructed directly by callers;

use markup5ever::QualName;
use std::cell::{Ref, RefMut};
use std::fmt;
use std::rc::Rc;

use crate::bbox::BoundingBox;
use crate::document::AcquiredNodes;
use crate::drawing_ctx::{DrawingCtx, Viewport};
use crate::element::*;
use crate::error::*;
use crate::paint_server::PaintSource;
use crate::properties::ComputedValues;
use crate::rsvg_log;
use crate::session::Session;
use crate::text::Chars;
use crate::xml::Attributes;

/// Strong reference to an element in the SVG tree.
///
/// See the [module documentation][self] for more information.
pub type Node = rctree::Node<NodeData>;

/// Weak reference to an element in the SVG tree.
///
/// See the [module documentation][self] for more information.
pub type WeakNode = rctree::WeakNode<NodeData>;

/// Data for a single DOM node.
///
/// ## Memory consumption
///
/// SVG files look like this, roughly:
///
/// ```xml
/// <svg>
///   <rect x="10" y="20"/>
///   <path d="..."/>
///   <text x="10" y="20">Hello</text>
///   <!-- etc -->
/// </svg>
/// ```
///
/// Each element has a bunch of data, including the styles, which is
/// the biggest consumer of memory within the `Element` struct.  But
/// between each element there is a text node; in the example above
/// there are a bunch of text nodes with just whitespace (newlines and
/// spaces), and a single text node with "`Hello`" in it from the
/// `<text>` element.
///
/// ## Accessing the node's contents
///
/// Code that traverses the DOM tree needs to find out at runtime what
/// each node stands for.  First, use the `is_chars` or `is_element`
/// methods from the `NodeBorrow` trait to see if you can then call
/// `borrow_chars`, `borrow_element`, or `borrow_element_mut`.
pub enum NodeData {
    Element(Box<Element>),
    Text(Box<Chars>),
}

impl NodeData {
    pub fn new_element(session: &Session, name: &QualName, attrs: Attributes) -> NodeData {
        NodeData::Element(Box::new(Element::new(session, name, attrs)))
    }

    pub fn new_chars(initial_text: &str) -> NodeData {
        NodeData::Text(Box::new(Chars::new(initial_text)))
    }
}

impl fmt::Display for NodeData {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            NodeData::Element(ref e) => {
                write!(f, "{e}")?;
            }
            NodeData::Text(_) => {
                write!(f, "Chars")?;
            }
        }

        Ok(())
    }
}

/// Can obtain computed values from a node
///
/// In our tree of SVG elements (Node in our parlance), each node stores a `ComputedValues` that
/// gets computed during the initial CSS cascade.  However, sometimes nodes need to be rendered
/// outside the normal hierarchy.  For example, the `<use>` element can "instance" a subtree from
/// elsewhere in the SVG; it causes the instanced subtree to re-cascade from the computed values for
/// the `<use>` element.
///
/// You can then call the `get()` method on the resulting `CascadedValues` to get a
/// `&ComputedValues` whose fields you can access.
pub struct CascadedValues<'a> {
    inner: CascadedInner<'a>,
    pub context_stroke: Option<Rc<PaintSource>>,
    pub context_fill: Option<Rc<PaintSource>>,
}

enum CascadedInner<'a> {
    FromNode(Ref<'a, Element>),
    FromValues(Box<ComputedValues>),
}

impl<'a> CascadedValues<'a> {
    /// Creates a `CascadedValues` that has the same cascading mode as &self
    ///
    /// This is what nodes should normally use to draw their children from their `draw()` method.
    /// Nodes that need to override the cascade for their children can use `new_from_values()`
    /// instead.
    pub fn clone_with_node(&self, node: &'a Node) -> CascadedValues<'a> {
        match self.inner {
            CascadedInner::FromNode(_) => CascadedValues {
                inner: CascadedInner::FromNode(node.borrow_element()),
                context_fill: self.context_fill.clone(),
                context_stroke: self.context_stroke.clone(),
            },

            CascadedInner::FromValues(ref v) => CascadedValues::new_from_values(
                node,
                v,
                self.context_fill.clone(),
                self.context_stroke.clone(),
            ),
        }
    }

    /// Creates a `CascadedValues` that will hold the `node`'s computed values
    ///
    /// This is to be used only in the toplevel drawing function, or in elements like `<marker>`
    /// that don't propagate their parent's cascade to their children.  All others should use
    /// `new()` to derive the cascade from an existing one.
    pub fn new_from_node(node: &Node) -> CascadedValues<'_> {
        CascadedValues {
            inner: CascadedInner::FromNode(node.borrow_element()),
            context_fill: None,
            context_stroke: None,
        }
    }

    /// Creates a `CascadedValues` that will override the `node`'s cascade with the specified
    /// `values`
    ///
    /// This is for the `<use>` element, which draws the element which it references with the
    /// `<use>`'s own cascade, not with the element's original cascade.
    pub fn new_from_values(
        node: &'a Node,
        values: &ComputedValues,
        fill: Option<Rc<PaintSource>>,
        stroke: Option<Rc<PaintSource>>,
    ) -> CascadedValues<'a> {
        let mut v = Box::new(values.clone());
        node.borrow_element()
            .get_specified_values()
            .to_computed_values(&mut v);

        CascadedValues {
            inner: CascadedInner::FromValues(v),
            context_fill: fill,
            context_stroke: stroke,
        }
    }

    /// Returns the cascaded `ComputedValues`.
    ///
    /// Nodes should use this from their `Draw::draw()` implementation to get the
    /// `ComputedValues` from the `CascadedValues` that got passed to `draw()`.
    pub fn get(&'a self) -> &'a ComputedValues {
        match self.inner {
            CascadedInner::FromNode(ref e) => e.get_computed_values(),
            CascadedInner::FromValues(ref v) => v,
        }

        // if values.fill == "context-fill" {
        //     values.fill=self.context_fill
        // }
        // if values.stroke == "context-stroke" {
        //     values.stroke=self.context_stroke
        // }
    }
}

/// Helper trait to get different NodeData variants
pub trait NodeBorrow {
    /// Returns `false` for NodeData::Text, `true` otherwise.
    fn is_element(&self) -> bool;

    /// Returns `true` for NodeData::Text, `false` otherwise.
    fn is_chars(&self) -> bool;

    /// Borrows a `Chars` reference.
    ///
    /// Panics: will panic if `&self` is not a `NodeData::Text` node
    fn borrow_chars(&self) -> Ref<'_, Chars>;

    /// Borrows an `Element` reference
    ///
    /// Panics: will panic if `&self` is not a `NodeData::Element` node
    fn borrow_element(&self) -> Ref<'_, Element>;

    /// Borrows an `Element` reference mutably
    ///
    /// Panics: will panic if `&self` is not a `NodeData::Element` node
    fn borrow_element_mut(&mut self) -> RefMut<'_, Element>;

    /// Borrows an `ElementData` reference to the concrete element type.
    ///
    /// Panics: will panic if `&self` is not a `NodeData::Element` node
    fn borrow_element_data(&self) -> Ref<'_, ElementData>;
}

impl NodeBorrow for Node {
    fn is_element(&self) -> bool {
        matches!(*self.borrow(), NodeData::Element(_))
    }

    fn is_chars(&self) -> bool {
        matches!(*self.borrow(), NodeData::Text(_))
    }

    fn borrow_chars(&self) -> Ref<'_, Chars> {
        Ref::map(self.borrow(), |n| match n {
            NodeData::Text(c) => &**c,
            _ => panic!("tried to borrow_chars for a non-text node"),
        })
    }

    fn borrow_element(&self) -> Ref<'_, Element> {
        Ref::map(self.borrow(), |n| match n {
            NodeData::Element(e) => &**e,
            _ => panic!("tried to borrow_element for a non-element node"),
        })
    }

    fn borrow_element_mut(&mut self) -> RefMut<'_, Element> {
        RefMut::map(self.borrow_mut(), |n| match &mut *n {
            NodeData::Element(e) => &mut **e,
            _ => panic!("tried to borrow_element_mut for a non-element node"),
        })
    }

    fn borrow_element_data(&self) -> Ref<'_, ElementData> {
        Ref::map(self.borrow(), |n| match n {
            NodeData::Element(e) => &e.element_data,
            _ => panic!("tried to borrow_element_data for a non-element node"),
        })
    }
}

#[doc(hidden)]
#[macro_export]
macro_rules! is_element_of_type {
    ($node:expr, $element_type:ident) => {
        matches!(
            $node.borrow_element().element_data,
            $crate::element::ElementData::$element_type(_)
        )
    };
}

#[doc(hidden)]
#[macro_export]
macro_rules! borrow_element_as {
    ($node:expr, $element_type:ident) => {
        std::cell::Ref::map($node.borrow_element_data(), |d| match d {
            $crate::element::ElementData::$element_type(ref e) => &*e,
            _ => panic!("tried to borrow_element_as {}", stringify!($element_type)),
        })
    };
}

/// Helper trait for cascading recursively
pub trait NodeCascade {
    fn cascade(&mut self, values: &ComputedValues);
}

impl NodeCascade for Node {
    fn cascade(&mut self, values: &ComputedValues) {
        let mut values = values.clone();

        {
            let mut elt = self.borrow_element_mut();

            elt.get_specified_values().to_computed_values(&mut values);
            elt.set_computed_values(&values);
        }

        for mut child in self.children().filter(|c| c.is_element()) {
            child.cascade(&values);
        }
    }
}

/// Helper trait for drawing recursively.
///
/// This is a trait because [`Node`] is a type alias over [`rctree::Node`], not a concrete type.
pub trait NodeDraw {
    fn draw(
        &self,
        acquired_nodes: &mut AcquiredNodes<'_>,
        cascaded: &CascadedValues<'_>,
        viewport: &Viewport,
        draw_ctx: &mut DrawingCtx,
        clipping: bool,
    ) -> Result<BoundingBox, InternalRenderingError>;

    fn draw_children(
        &self,
        acquired_nodes: &mut AcquiredNodes<'_>,
        cascaded: &CascadedValues<'_>,
        viewport: &Viewport,
        draw_ctx: &mut DrawingCtx,
        clipping: bool,
    ) -> Result<BoundingBox, InternalRenderingError>;
}

impl NodeDraw for Node {
    fn draw(
        &self,
        acquired_nodes: &mut AcquiredNodes<'_>,
        cascaded: &CascadedValues<'_>,
        viewport: &Viewport,
        draw_ctx: &mut DrawingCtx,
        clipping: bool,
    ) -> Result<BoundingBox, InternalRenderingError> {
        match *self.borrow() {
            NodeData::Element(ref e) => {
                rsvg_log!(draw_ctx.session(), "({}", e);
                let res = match e.draw(self, acquired_nodes, cascaded, viewport, draw_ctx, clipping)
                {
                    Ok(bbox) => Ok(bbox),

                    // https://www.w3.org/TR/css-transforms-1/#transform-function-lists
                    //
                    // "If a transform function causes the current transformation matrix of an
                    // object to be non-invertible, the object and its content do not get
                    // displayed."
                    Err(InternalRenderingError::InvalidTransform) => Ok(draw_ctx.empty_bbox()),

                    Err(e) => Err(e),
                };

                rsvg_log!(draw_ctx.session(), ")");

                res
            }

            _ => Ok(draw_ctx.empty_bbox()),
        }
    }

    fn draw_children(
        &self,
        acquired_nodes: &mut AcquiredNodes<'_>,
        cascaded: &CascadedValues<'_>,
        viewport: &Viewport,
        draw_ctx: &mut DrawingCtx,
        clipping: bool,
    ) -> Result<BoundingBox, InternalRenderingError> {
        let mut bbox = draw_ctx.empty_bbox();

        for child in self.children().filter(|c| c.is_element()) {
            let child_bbox = draw_ctx.draw_node_from_stack(
                &child,
                acquired_nodes,
                &CascadedValues::clone_with_node(cascaded, &child),
                viewport,
                clipping,
            )?;
            bbox.insert(&child_bbox);
        }

        Ok(bbox)
    }
}