Atomic Operations

Atomic Operations — basic atomic integer and pointer operations

Functions

Types and Values

Includes

#include <glib.h>

Description

The following is a collection of compiler macros to provide atomic access to integer and pointer-sized values.

The macros that have 'int' in the name will operate on pointers to gint and guint. The macros with 'pointer' in the name will operate on pointers to any pointer-sized value, including gsize. There is no support for 64bit operations on platforms with 32bit pointers because it is not generally possible to perform these operations atomically.

The get, set and exchange operations for integers and pointers nominally operate on gint and gpointer, respectively. Of the arithmetic operations, the 'add' operation operates on (and returns) signed integer values (gint and gssize) and the 'and', 'or', and 'xor' operations operate on (and return) unsigned integer values (guint and gsize).

All of the operations act as a full compiler and (where appropriate) hardware memory barrier. Acquire and release or producer and consumer barrier semantics are not available through this API.

It is very important that all accesses to a particular integer or pointer be performed using only this API and that different sizes of operation are not mixed or used on overlapping memory regions. Never read or assign directly from or to a value -- always use this API.

For simple reference counting purposes you should use g_atomic_int_inc() and g_atomic_int_dec_and_test(). Other uses that fall outside of simple reference counting patterns are prone to subtle bugs and occasionally undefined behaviour. It is also worth noting that since all of these operations require global synchronisation of the entire machine, they can be quite slow. In the case of performing multiple atomic operations it can often be faster to simply acquire a mutex lock around the critical area, perform the operations normally and then release the lock.

Functions

g_atomic_int_get ()

gint
g_atomic_int_get (const volatile gint *atomic);

Gets the current value of atomic .

This call acts as a full compiler and hardware memory barrier (before the get).

While atomic has a volatile qualifier, this is a historical artifact and the pointer passed to it should not be volatile.

Parameters

atomic

a pointer to a gint or guint

 

Returns

the value of the integer

Since: 2.4


g_atomic_int_set ()

void
g_atomic_int_set (volatile gint *atomic,
                  gint newval);

Sets the value of atomic to newval .

This call acts as a full compiler and hardware memory barrier (after the set).

While atomic has a volatile qualifier, this is a historical artifact and the pointer passed to it should not be volatile.

Parameters

atomic

a pointer to a gint or guint

 

newval

a new value to store

 

Since: 2.4


g_atomic_int_inc ()

void
g_atomic_int_inc (gint *atomic);

Increments the value of atomic by 1.

Think of this operation as an atomic version of { *atomic += 1; }.

This call acts as a full compiler and hardware memory barrier.

While atomic has a volatile qualifier, this is a historical artifact and the pointer passed to it should not be volatile.

Parameters

atomic

a pointer to a gint or guint

 

Since: 2.4


g_atomic_int_dec_and_test ()

gboolean
g_atomic_int_dec_and_test (gint *atomic);

Decrements the value of atomic by 1.

Think of this operation as an atomic version of { *atomic -= 1; return (*atomic == 0); }.

This call acts as a full compiler and hardware memory barrier.

While atomic has a volatile qualifier, this is a historical artifact and the pointer passed to it should not be volatile.

Parameters

atomic

a pointer to a gint or guint

 

Returns

TRUE if the resultant value is zero

Since: 2.4


g_atomic_int_compare_and_exchange ()

gboolean
g_atomic_int_compare_and_exchange (volatile gint *atomic,
                                   gint oldval,
                                   gint newval);

Compares atomic to oldval and, if equal, sets it to newval . If atomic was not equal to oldval then no change occurs.

This compare and exchange is done atomically.

Think of this operation as an atomic version of { if (*atomic == oldval) { *atomic = newval; return TRUE; } else return FALSE; }.

This call acts as a full compiler and hardware memory barrier.

While atomic has a volatile qualifier, this is a historical artifact and the pointer passed to it should not be volatile.

Parameters

atomic

a pointer to a gint or guint

 

oldval

the value to compare with

 

newval

the value to conditionally replace with

 

Returns

TRUE if the exchange took place

Since: 2.4


g_atomic_int_add ()

gint
g_atomic_int_add (volatile gint *atomic,
                  gint val);

Atomically adds val to the value of atomic .

Think of this operation as an atomic version of { tmp = *atomic; *atomic += val; return tmp; }.

This call acts as a full compiler and hardware memory barrier.

Before version 2.30, this function did not return a value (but g_atomic_int_exchange_and_add() did, and had the same meaning).

While atomic has a volatile qualifier, this is a historical artifact and the pointer passed to it should not be volatile.

Parameters

atomic

a pointer to a gint or guint

 

val

the value to add

 

Returns

the value of atomic before the add, signed

Since: 2.4


g_atomic_int_and ()

guint
g_atomic_int_and (volatile guint *atomic,
                  guint val);

Performs an atomic bitwise 'and' of the value of atomic and val , storing the result back in atomic .

This call acts as a full compiler and hardware memory barrier.

Think of this operation as an atomic version of { tmp = *atomic; *atomic &amp;= val; return tmp; }.

While atomic has a volatile qualifier, this is a historical artifact and the pointer passed to it should not be volatile.

Parameters

atomic

a pointer to a gint or guint

 

val

the value to 'and'

 

Returns

the value of atomic before the operation, unsigned

Since: 2.30


g_atomic_int_or ()

guint
g_atomic_int_or (volatile guint *atomic,
                 guint val);

Performs an atomic bitwise 'or' of the value of atomic and val , storing the result back in atomic .

Think of this operation as an atomic version of { tmp = *atomic; *atomic |= val; return tmp; }.

This call acts as a full compiler and hardware memory barrier.

While atomic has a volatile qualifier, this is a historical artifact and the pointer passed to it should not be volatile.

Parameters

atomic

a pointer to a gint or guint

 

val

the value to 'or'

 

Returns

the value of atomic before the operation, unsigned

Since: 2.30


g_atomic_int_xor ()

guint
g_atomic_int_xor (volatile guint *atomic,
                  guint val);

Performs an atomic bitwise 'xor' of the value of atomic and val , storing the result back in atomic .

Think of this operation as an atomic version of { tmp = *atomic; *atomic ^= val; return tmp; }.

This call acts as a full compiler and hardware memory barrier.

While atomic has a volatile qualifier, this is a historical artifact and the pointer passed to it should not be volatile.

Parameters

atomic

a pointer to a gint or guint

 

val

the value to 'xor'

 

Returns

the value of atomic before the operation, unsigned

Since: 2.30


g_atomic_pointer_get ()

gpointer
g_atomic_pointer_get (const volatile void *atomic);

Gets the current value of atomic .

This call acts as a full compiler and hardware memory barrier (before the get).

While atomic has a volatile qualifier, this is a historical artifact and the pointer passed to it should not be volatile.

Parameters

atomic

a pointer to a gpointer-sized value.

[not nullable]

Returns

the value of the pointer

Since: 2.4


g_atomic_pointer_set ()

void
g_atomic_pointer_set (volatile void *atomic,
                      gpointer newval);

Sets the value of atomic to newval .

This call acts as a full compiler and hardware memory barrier (after the set).

While atomic has a volatile qualifier, this is a historical artifact and the pointer passed to it should not be volatile.

Parameters

atomic

a pointer to a gpointer-sized value.

[not nullable]

newval

a new value to store

 

Since: 2.4


g_atomic_pointer_compare_and_exchange ()

gboolean
g_atomic_pointer_compare_and_exchange (volatile void *atomic,
                                       gpointer oldval,
                                       gpointer newval);

Compares atomic to oldval and, if equal, sets it to newval . If atomic was not equal to oldval then no change occurs.

This compare and exchange is done atomically.

Think of this operation as an atomic version of { if (*atomic == oldval) { *atomic = newval; return TRUE; } else return FALSE; }.

This call acts as a full compiler and hardware memory barrier.

While atomic has a volatile qualifier, this is a historical artifact and the pointer passed to it should not be volatile.

Parameters

atomic

a pointer to a gpointer-sized value.

[not nullable]

oldval

the value to compare with

 

newval

the value to conditionally replace with

 

Returns

TRUE if the exchange took place

Since: 2.4


g_atomic_pointer_add ()

gssize
g_atomic_pointer_add (volatile void *atomic,
                      gssize val);

Atomically adds val to the value of atomic .

Think of this operation as an atomic version of { tmp = *atomic; *atomic += val; return tmp; }.

This call acts as a full compiler and hardware memory barrier.

While atomic has a volatile qualifier, this is a historical artifact and the pointer passed to it should not be volatile.

Parameters

atomic

a pointer to a gpointer-sized value.

[not nullable]

val

the value to add

 

Returns

the value of atomic before the add, signed

Since: 2.30


g_atomic_pointer_and ()

gsize
g_atomic_pointer_and (volatile void *atomic,
                      gsize val);

Performs an atomic bitwise 'and' of the value of atomic and val , storing the result back in atomic .

Think of this operation as an atomic version of { tmp = *atomic; *atomic &amp;= val; return tmp; }.

This call acts as a full compiler and hardware memory barrier.

While atomic has a volatile qualifier, this is a historical artifact and the pointer passed to it should not be volatile.

Parameters

atomic

a pointer to a gpointer-sized value.

[not nullable]

val

the value to 'and'

 

Returns

the value of atomic before the operation, unsigned

Since: 2.30


g_atomic_pointer_or ()

gsize
g_atomic_pointer_or (volatile void *atomic,
                     gsize val);

Performs an atomic bitwise 'or' of the value of atomic and val , storing the result back in atomic .

Think of this operation as an atomic version of { tmp = *atomic; *atomic |= val; return tmp; }.

This call acts as a full compiler and hardware memory barrier.

While atomic has a volatile qualifier, this is a historical artifact and the pointer passed to it should not be volatile.

Parameters

atomic

a pointer to a gpointer-sized value.

[not nullable]

val

the value to 'or'

 

Returns

the value of atomic before the operation, unsigned

Since: 2.30


g_atomic_pointer_xor ()

gsize
g_atomic_pointer_xor (volatile void *atomic,
                      gsize val);

Performs an atomic bitwise 'xor' of the value of atomic and val , storing the result back in atomic .

Think of this operation as an atomic version of { tmp = *atomic; *atomic ^= val; return tmp; }.

This call acts as a full compiler and hardware memory barrier.

While atomic has a volatile qualifier, this is a historical artifact and the pointer passed to it should not be volatile.

Parameters

atomic

a pointer to a gpointer-sized value.

[not nullable]

val

the value to 'xor'

 

Returns

the value of atomic before the operation, unsigned

Since: 2.30


g_atomic_int_exchange_and_add ()

gint
g_atomic_int_exchange_and_add (volatile gint *atomic,
                               gint val);

g_atomic_int_exchange_and_add has been deprecated since version 2.30 and should not be used in newly-written code.

Use g_atomic_int_add() instead.

This function existed before g_atomic_int_add() returned the prior value of the integer (which it now does). It is retained only for compatibility reasons. Don't use this function in new code.

Parameters

atomic

a pointer to a gint

 

val

the value to add

 

Returns

the value of atomic before the add, signed

Since: 2.4

Types and Values

G_ATOMIC_LOCK_FREE

#define G_ATOMIC_LOCK_FREE

This macro is defined if the atomic operations of GLib are implemented using real hardware atomic operations. This means that the GLib atomic API can be used between processes and safely mixed with other (hardware) atomic APIs.

If this macro is not defined, the atomic operations may be emulated using a mutex. In that case, the GLib atomic operations are only atomic relative to themselves and within a single process.

See Also

GMutex