Struct

Pango.Matrix

Description [src]

struct PangoMatrix {
  double xx;
  double xy;
  double yx;
  double yy;
  double x0;
  double y0;
}

A PangoMatrix specifies a transformation between user-space and device coordinates.

The transformation is given by

x_device = x_user * matrix->xx + y_user * matrix->xy + matrix->x0;
y_device = x_user * matrix->yx + y_user * matrix->yy + matrix->y0;
Structure members
xx

1st component of the transformation matrix

xy

2nd component of the transformation matrix

yx

3rd component of the transformation matrix

yy

4th component of the transformation matrix

x0

x translation

y0

y translation

Instance methods

pango_matrix_concat

Changes the transformation represented by matrix to be the transformation given by first applying transformation given by new_matrix then applying the original transformation.

pango_matrix_copy

Copies a PangoMatrix.

pango_matrix_free

Free a PangoMatrix.

pango_matrix_get_font_scale_factor

Returns the scale factor of a matrix on the height of the font.

pango_matrix_get_font_scale_factors

Calculates the scale factor of a matrix on the width and height of the font.

pango_matrix_rotate

Changes the transformation represented by matrix to be the transformation given by first rotating by degrees degrees counter-clockwise then applying the original transformation.

pango_matrix_scale

Changes the transformation represented by matrix to be the transformation given by first scaling by sx in the X direction and sy in the Y direction then applying the original transformation.

pango_matrix_transform_distance

Transforms the distance vector (dx,dy) by matrix.

pango_matrix_transform_pixel_rectangle

First transforms the rect using matrix, then calculates the bounding box of the transformed rectangle.

pango_matrix_transform_point

Transforms the point (x, y) by matrix.

pango_matrix_transform_rectangle

First transforms rect using matrix, then calculates the bounding box of the transformed rectangle.

pango_matrix_translate

Changes the transformation represented by matrix to be the transformation given by first translating by (tx, ty) then applying the original transformation.