
Vala Reference Manual
Release 0.57.0.298-a8cae1

The Vala Project

Apr 25, 2024





CONTENTS

1 Overview 3
1.1 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Documentation conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Vala source files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Vala conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Vala syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 GType and GObject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.7 Memory management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.8 Vala compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.9 Application entry point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Concepts 7
2.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Scope and naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Object oriented programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 References and ownership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Types 13
3.1 Value types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Reference types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Parameterised types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Nullable types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Pointer types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6 Type conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Expressions 21
4.1 Literal expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Member access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Element access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 Arithmetic operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5 Relational operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.6 Increment/decrement operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.7 Logical operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.8 Bitwise operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.9 Assignment operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.10 Invocation expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.11 Class instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.12 Struct instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.13 Array instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.14 Conditional expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

i



4.15 Coalescing expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.16 Flag operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.17 Type operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.18 Ownership transfer expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.19 Lambda expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.20 Pointer expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Statements 31
5.1 Simple statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Variable declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Selection statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 Iteration statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.5 Jump Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.6 Try Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.7 Lock Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.8 Unlock Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.9 With Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Namespaces 37
6.1 The global namespace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Namespace declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.3 Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.4 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.5 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.6 The “using” statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7 Methods 41
7.1 Parameter directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2 Method declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.3 Invocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.4 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.5 Lambdas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.6 Contract programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 Delegates 45
8.1 Types of delegate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.2 Delegate declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.3 Using delegates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

9 Errors 49
9.1 Error throwing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9.2 Error catching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
9.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

10 Classes 53
10.1 Types of class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.2 Types of class members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
10.3 Class scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
10.4 Class member visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
10.5 Class declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
10.6 Controlling instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
10.7 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
10.8 Class fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
10.9 Class constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

ii



10.10 Class methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.11 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10.12 Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
10.13 Class enums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
10.14 Class delegates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
10.15 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

11 Interfaces 67
11.1 Interface declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
11.2 Interface fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
11.3 Interface methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
11.4 Interface properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
11.5 Interface signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
11.6 Other interface members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
11.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

12 Generics 73
12.1 Generics declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
12.2 Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
12.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

13 Structs 77
13.1 Struct declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
13.2 Controlling instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
13.3 Struct fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
13.4 Struct constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
13.5 Struct methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
13.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

14 Enumerated types (Enums) 79
14.1 Enum declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
14.2 Enum members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
14.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
14.4 Flag types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
14.5 Error domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
14.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

15 Attributes 83
15.1 Applying attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
15.2 CCode attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
15.3 Version attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
15.4 SimpleType attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
15.5 BooleanType attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
15.6 IntegerType attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
15.7 FloatingType attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
15.8 Signal attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
15.9 Description attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
15.10 DBus attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
15.11 Gtk attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
15.12 Other attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
15.13 Deprecated attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
15.14 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

16 Preprocessor 91
16.1 Directives syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

iii



16.2 Defining symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
16.3 Built-in defines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
16.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

17 GIR metadata format 95
17.1 Locating metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
17.2 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
17.3 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
17.4 Valid arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
17.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

18 GIDL metadata format 99
18.1 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
18.2 Other Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
18.3 Specifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
18.4 Specifying Different Things . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
18.5 Properties Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
18.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

iv



Vala Reference Manual, Release 0.57.0.298-a8cae1

This is the reference for all features, syntax elements, internals and generated output of Vala.

It is not the best place to learn about Vala and especially for beginners might not be easy to understand. A good first
tutorial for beginners is the Vala Tutorial. If you want to write a GUI app start here.

To contribute to this reference you can submit merge requests to the Gitlab repository.

CONTENTS 1

https://wiki.gnome.org/Projects/Vala/Tutorial
https://developer.gnome.org/documentation/tutorials/beginners/getting_started.html
https://gitlab.gnome.org/GNOME/vala


Vala Reference Manual, Release 0.57.0.298-a8cae1

2 CONTENTS



CHAPTER

ONE

OVERVIEW

Vala is a programming language that aims to bring modern language features to GNOME developers without imposing
any additional runtime requirements and without using a different ABI than applications and libraries written in C.
It provides a concise way of using GLib and GObject features, but does not attempt to expose all possibilities. In
particular, Vala is primarily a statically typed language - this is a design decision, not an oversight.

The only support that Vala applications require at runtime are the standard GLib and GObject libraries. It is possible
to use any system library from Vala, provided that a VAPI file is written to describe the interface - Vala is distributed
with VAPI descriptions of most libraries commonly used by GNOME applications, and many others as well.

Vala provides easy integration with DBus, by automatically writing boiler plate code where required, for exposing
objects, dispatching methods, etc.

1.1 Getting started

The classic “Hello, world” example in Vala:

1 int main (string[] args) {
2 stdout.printf ("hello, world\n");
3 return 0;
4 }

Store the code in a file whose name ends in “.vala”, such as hello.vala, and compile it with the command:

$ valac -o hello hello.vala

This will produce an executable file called hello. “valac” is the Vala compiler; it will also allow you to take more
control of the compile and link processes when required, but that is outside the scope of this introductory section.

1.2 Documentation conventions

A large amount of this documentation describes the language features precisely using a simple rule notation. The same
notation is used to describe language syntax and semantics, with the accompanying text always explaining what is
described. The following example shows the form:

rule-name:
literalstring1
literalstring2 [ optional-section ]

optional-section:

3



Vala Reference Manual, Release 0.57.0.298-a8cae1

literalstring3

Here, “rule-name” and “optional-section” describe rules, each of which can be expanded in a particular way. Expanding
a rule means substituting one of the options of the rule into the place the rule is used. In the example, “optional-section”
can be expanded into “literalstring3” or, in “rule-name”, “optional-section” can also be substituted for nothing, as it
is declared optional by the square brackets. Wherever “rule-name” is required, it can be substituted for either of the
options declared in “rule-name”. Anything highlighted, such as all literalstrings here are not rules, and thus cannot
be expanded.

Example code is shown as follows. Example code will always be valid Vala code, but will not necessarily be usable
out of context.

1 class MyClass : Object {
2 int field = 1;
3 }

Some phrases are used in a specific ways in this documentation and it is often useful to recognise their precise meanings:
that is, to create a method, you write a declaration for it. When the program is running and the method exists, it is then
defined as per your declaration and can be invoked.

1.3 Vala source files

There are two types of Vala input files. Vala source files (with a “.vala” extension) contain compilable Vala code. VAPI
files (with a “.vapi” extension) describe an interface to a library, which can be written in either Vala or C. VAPI files
are not compilable, and cannot contain any executable code - they are used when compiling Vala source files.

There are no requirements for how Vala source files are named, although there are conventions that can be followed.
VAPI files are usually named to matched the pkg-config name of the library they relate to; they are described more
fully in the documentation about bindings.

All Vala input files should be encoded in UTF-8.

1.4 Vala conventions

The logical structure of a Vala project is entirely based on the program text, not the file layout or naming. Vala therefore
does not force particular naming schemes or file layouts. There are established conventions derived from how GNOME
related applications are normally written, which are strongly encouraged. The choice of directory structure for a project
is outside the scope of this documentation.

Vala source files usually contain one main public class, after which the source file is named. A common choice is to
convert this main class’ name to lowercase, and prefix with its namespace, also in lower case, to form the file name. In
a small project the namespace may be redundant and so excluded. None of this is a requirement, it is just a convention.

It is not encouraged to include declarations in more than one namespace in a single Vala source file, simply for reasons
of clarity. A namespace may be divided over any number of source files, but will normally not be used outside of one
project. Each library or application will normally have one main namespace, with potentially others nested within.

In source code, the following naming conventions are normally followed:

• Namespaces are named in camel case: NameSpaceName

• Classes are named in camel case: ClassName

• Method names are all lowercase and use underscores to separate words: method_name

4 Chapter 1. Overview



Vala Reference Manual, Release 0.57.0.298-a8cae1

• Constants (and values of enumerated types) are all uppercase, with underscores between words: CON-
STANT_NAME

Vala supports the notion of a package to conveniently divide program sections. A package is either a combination of
an installed system library and its Vala binding, or else is a local directory that can be treated in a similar way. In the
latter case it will contain all functionality related to some topic, the scope of which is up to the developer. All source
files in package are placed within a directory named for package name. For details on using packages, see the Vala
compiler documentation

1.5 Vala syntax

Vala’s syntax is modelled on C#’s, and is therefore similar to all C-like languages. Curly braces are the basic delimiter,
marking the start and end of a declaration or block of code.

There is no whitespace requirement, though this is a standard format that is used in Vala itself, and in many Vala
projects. This format is a version of the coding style used for glib and gnome projects, but is not fully described in this
document, other than being used for all examples.

There is flexibility in the order of declarations in Vala. It is not required to pre-declare anything in order to use it before
its declaration.

Identifiers all follow the same rules, whether for local variables or class names. Legal identifiers must begin with one
alphabetic character or underscore, followed by any number (zero or more) of alphanumerics or underscores (/[:al-
pha:_]([:alphanum:_])*/). It is also possible to use language keywords as identifiers, provided they are prefixed with a
“@” when used in this way - the “@” is not considered a part of the identifier, it simply informs the compiler that the
token should be considered as an identifier.

1.6 GType and GObject

Vala uses the runtime type system called GType. This system allows every type in Vala, including the fundamental
types, to be identified at runtime. A Vala developer doesn’t need to be aware of GType in most circumstances, as all
interaction with the system is automatic.

GType provides Vala with a powerful object model called GObject. To all types descended from GLib.Object class,
this model provides for features such as properties and signals.

GType and GObject are entirely runtime type systems, intended to be usable to dynamically typed languages. Vala is
primarily a statically typed language, and so is designed not to provide access to all of GType and GObject’s features.
Instead Vala uses a coherent subset to support particular programming styles.

Vala is designed to use GType and GObject seamlessly. There are occasions, mostly when working with existing
libraries, when you might need to circumvent parts of the system. These are all indicated in this documentation.

1.7 Memory management

Vala automatically uses the memory management system in GLib, which is a reference counting system. In order for
this to work, the types used must support reference counting, as is the case with all GObject derived types and some
others.

Memory is allocated and initialised by Vala when needed. The memory management scheme means it is also freed
when possible. There is though no garbage collector, and currently reference cycles are not automatically broken. This
can lead to memory being leaked. The main way to avoid this problem is to use weak references - these are not counted
references and so cannot prevent memory being released, at the cost that they can be left referring to non existent data.

1.5. Vala syntax 5



Vala Reference Manual, Release 0.57.0.298-a8cae1

Vala also allows use of pointers in much the same way as C. An instance of a pointer type refers directly to an address
in memory. Pointers are not references, and therefore the automatic memory management rules do not apply in the
same way. See Pointer types.

There are more details about memory management elsewhere, see Types, see Concepts.

1.8 Vala compilation

Vala programs and libraries are translated into C before being compiled into machine code. This stage is intended to
be entirely transparent unless you request otherwise, as such it is not often required to know the details.

When performing a more complicated compile or link process than valac’s default, valac can be instructed to simply
output its intermediate C form of the program and exit. Each Vala source file is transformed into a C header and a C
source file, each having the same name as the Vala source file except for the extension. These C files can be compiled
without any help from any Vala utility or library.

The only times it is definitely required to be aware of the translation process is when a Vala feature cannot be represented
in C, and so the generated C API will not be the same as the Vala one. For example, private struct members are
meaningless in C. These issues are indicated in this documentation.

1.9 Application entry point

All Vala applications are executed beginning with a method called “main”. This must be a non-instance method, but
may exist inside a namespace or class. If the method takes a string array parameter, it will be passed the arguments
given to the program on execution. If it returns an int type, this value will be passed to the user on the program’s
normal termination. The entry point method may not accept any other parameters, or return any other types, making
the acceptable definitions:

1 void main () { ... }
2 int main () { ... }
3 void main (string[] args) { ... }
4 int main (string[] args) { ... }

The entry point can be implicit, in the sense that you can write the main code block directly in the file outside the main
function.

6 Chapter 1. Overview



CHAPTER

TWO

CONCEPTS

This pages describes concepts that are widely applicable in Vala. Specific syntax is not described here, see the linked
pages for more details.

2.1 Variables

Any piece of data in a Vala application is considered an instance of a data type. There are various different categories
of data types, some being built into Vala, and others being user defined. Details about types are described elsewhere
in this documentation, in particular see Types.

Instances of these types are created in various different ways, depending on the type. For example, fundamental types
are instantiated with literal expressions, and classed types with the new operator.

In order to access data, the instance must be identifiable in some way, such as by a name. In Vala, there are broadly
three ways that this is done, with similar but not identical semantics.

(All these subsections refer to ownership, so it may be useful to read the section on References and ownership in
conjunction with this section)

2.1.1 Local variables

Within executable code in a method, an instance may be assigned to a variable. A variable has a name and is declared
to refer to an instance of a particular data type. A typical variable declaration would be:

1 int a;

This declaration defines that “a” should become an expression that evaluates to an instance of the int type. The actual
value of this expression will depend on which int instance is assigned to the variable. “a” can be assigned to more than
once, with the most recent assignment being the only one considered when “a” is evaluated. Assignment to the variable
is achieved via an assignment expression. Generally, the semantics of an assignment expression depends on the type
of the variable.

A variable can take ownership of an instance, the precise meaning of which depends on the data type. In the context of
reference types, it is possible to declare that a variable should not ever take ownership of an instance, this is done with
the unowned keyword. See Reference types.

If a type is directly instantiated in a variable declaration statement, then the variable will be created owning that new
instance, for example:

1 string s = "stringvalue";

7



Vala Reference Manual, Release 0.57.0.298-a8cae1

A variable ceases to exist when its scope is destroyed, that is when the code block it is defined in finishes. After this,
the name can no longer be used to access the instance, and no new assignment to the variable is allowed. What happens
to the instance itself is dependent on the type.

For more details of the concepts in this section, see Variable declaration and Assignment operations.

2.1.2 Fields

A field is similar to a variable, except for the scope that it is defined in. Fields can be defined in namespaces, classes
and structs. In the case of classes and structs, they may be either in the scope of the class or struct, or in the scope of
each instance of the class or struct.

A field is valid as long as its scope still exists - for non-instance fields, this is the entire life of the application; for
instance fields, this is the lifetime of the instance.

Like variables, fields can take ownership of instances, and it is again possible to avoid this with the unowned keyword.

If a type is directly instantiated in the declaration of the field, then that field will be created owning that new instance.

For more details about fields, see Namespaces, Classes and Structs.

2.1.3 Parameters

Instances passed to methods are accessible within that method with names given in the method’s parameter list.

They act like variables, except that they cannot, by default, take ownership of the first instance that is assigned to
them, i.e. the instance passed to the method. This behaviour can be changed using explicit ownership transfer. When
reassigning to a parameter, the result depends on the parameter direction. Assuming the parameter has no direction
modifier, it will subsequently act exactly as a variable.

For more details of methods and parameters, see Methods and Ownership transfer expressions.

2.2 Scope and naming

A “scope” in Vala refers to any context in which identifiers can be valid. Identifiers in this case refers to anything
named, including class definitions, fields, variables, etc. Within a particular scope, identifiers defined in this scope can
be used directly:

1 void main () {
2 int a = 5;
3 int b = a + 1;
4 }

Scopes in Vala are introduced in various different ways.

• Named scopes can be created directly with declarations like namespaces. These are always in existence when
the program is running, and can be referred to by their name.

• Transient scopes are created automatically as the program executes. Every time a new code block is entered, a
new scope is created. For example, a new scope is created when a method is invoked. There is no way to refer
to this type of scope from outside.

• Instance scopes are created when a data type is instantiated, for example when a new instance of a classed type
is created. These scopes can be accessed via identifiers defined in other scopes, e.g. a variable to which the new
instance is assigned.

8 Chapter 2. Concepts



Vala Reference Manual, Release 0.57.0.298-a8cae1

To refer to an identifier in another scope, you must generally qualify the name. For named scopes, the scope name
is used; for instance scopes, any identifier to which the instance is assigned can be used. See Member access for the
syntax of accessing other scopes.

Scopes have parent scopes. If an identifier is not recognised in the current scope, the parent scope is searched. This
continues up to the global scope. The parent scope of any scope is inferred from its position in the program - the parent
scope can easily be identified as it is the scope the current declaration is in.

For example, a namespace method creates a transient scope when it is invoked - the parent of this scope if the namespace
which contains the definition of the method. There are slightly different rules applied when instances are involved, as
are described at Class scope.

The ultimate parent of all other scopes is the global scope. The scope contains the fundamental data types, e.g. int,
float, string. If a program has a declaration outside of any other, it is placed in this scope.

2.2.1 Qualifying names

The following rules describe when to qualify names:

• For names in the same scope as the current definition, just the name should be used.

• For names in scopes of which the current is parent, qualify with just the names of scopes that the current definition
is not nested within.

• For names in other scopes entirely, or that are less deeply nested than the current, use the fully qualified name
(starting from the global scope.)

There are some intricacies of scopes described elsewhere in this documentation. See Classes for how scopes are
managed for inherited classes.

Vala will lookup names assuming first that they are not fully qualified. If a fully qualified name can be partially matched
locally, or in a parent scope that is not the global scope, the compilation will fail. To avoid problems with this, do not
reuse names from the global scope in other scopes.

There is one special scope qualifier that can be used to avoid the problem described in the previous paragraph. Prefixing
an identifier with global:: will instruct the compiler to only attempt to find the identifier in the global scope, skipping
all earlier searching.

2.3 Object oriented programming

Vala is primarily an object oriented language. This documentation isn’t going to describe object oriented programming
in detail, but in order for other sections to make sense, some things need to be explained.

A class in Vala is a definition of a potentially polymorphic type. A polymorphic type is one which can be viewed as
more than one type. The basic method for this is inheritance, whereby one type can be defined as a specialized version
of another. An instance of a subtype, descended from a particular supertype, has all the properties of the supertype,
and can be used wherever an instance of the supertype is expected. This sort of relationship is described as a “subtype
instance is-a supertype instance.” See Classes.

Vala provides inheritance functionality to any type of class (see Types of class). Given the following definition, every
SubType instance is-a SuperType instance:

1 class SuperType {
2 public int act () {
3 return 1;
4 }

(continues on next page)

2.3. Object oriented programming 9



Vala Reference Manual, Release 0.57.0.298-a8cae1

(continued from previous page)

5 }
6

7 class SubType : SuperType {
8 }

Whenever a SuperType instance is required, a SubType instance may be used. This is the extent of inheritance allowed
to compact classes, but full classes are more featured. All classes that are not of compact type, can have virtual methods,
and can implement interfaces.

To explain virtual functions, it makes sense to look at the alternative first. In the above example, it is legal for SubType
to also define a method called “act” - this is called overriding. In this case, when a method called “act” is called on
a SubType instance, which method is invoked depends on what type the invoker believed it was dealing with. The
following example demonstrates this:

1 SubType sub = new SubType ();
2 SuperType super = sub;
3

4 sub.act ();
5 super.act ();

Here, when sub.act() is called, the method invoked will be SubType’s “act” method. The call super.act() will call
SuperType’s “act”. If the act method were virtual, the SubType.act method would have been called on both occasions.
See Class methods for how to declare virtual methods.

Interfaces are a variety of non-instantiatable type. This means that it is not possible to create an instance of the type.
Instead, interfaces are implemented by other types. Instances of these other types may then be used as though they
were instances of the interface in question. See Interfaces.

2.4 References and ownership

Type instances in Vala are automatically managed to a large degree. This means that memory is allocated to store
the data, and then deallocated when the data is no longer required. However, Vala does not have a runtime garbage
collector, instead it applies rules at compile time that will predictably deallocate memory at runtime.

A central concept of Vala’s memory management system is ownership. An instance is considered still in use as long as
there is at least one way of accessing it, i.e. there is some field, variable or parameter that refers to the instance - one such
identifier will be considered the instance’s owner, and therefore the instance’s memory will not be deallocated. When
there is no longer any way to access the data instance, it is considered unowned, and its memory will be deallocated.

2.4.1 Value types

When dealing with instances of value types (see Types) knowledge of ownership is rarely important. This is because
the instance is copied whenever it is assigned to a new identifier. This will cause each identifier to become owner of a
unique instance - that instance will then be deallocated when the identifier ceases to be valid.

There is one exception to this rule: when a struct type instance is passed to a method, Vala will, by default, create the
method parameter as a reference to the instance instead of copying the instance. This reference is a weak reference, as
described in the following section. If the struct should instead be copied, and the parameter created as a standard value
type identifier, the ownership transfer operator should be used (see Ownership transfer expressions).

10 Chapter 2. Concepts



Vala Reference Manual, Release 0.57.0.298-a8cae1

2.4.2 Reference types

With reference types, it is possible for several identifiers to reference the same data instance. Not all identifiers that
refer to reference type instance are capable of owning the instance, for reasons that will be explained. It is therefore
often required to think about instance ownership when writing Vala code.

Most reference types support reference counting. This means that the instance internally maintains a count of how
many references to it currently exist. This count is used to decide whether the instance is still in use, or if its memory
can be deallocated. Each reference that is counted in this way is therefore a potential owner of the instance, as it ensures
the instance continues to exist. There are situations when this is not desired, and so it is possible to define a field or
variable as “weak”. In this case the reference is not counted, and so the fact that the reference exists will not stop the
instance being possibly deallocated, i.e. this sort of reference cannot take ownership of the instance.

When using reference counted types, the main use for weak references is to prevent reference cycles. These exist when
a data instance contains internally a reference to another instance, which in turn contains a reference to the first. In this
case it would not be possible to deallocate the instances, as each would be potentially owning the other. By ensuring
that one of the references is weak, one of the instances can become unowned and be deallocated, and in the process the
other will be dereferenced, and potentially become unowned and be deallocated also.

It is also possible to have reference types which are not reference counted; an example of this is the fundamental string
type, others are compact classed types. If Vala were to allow several references to own such instances, it would not
be able to keep track of when they all ceased to exist, and therefore would not be able to know when to deallocate the
instance. Instead, exactly one or zero identifiers will own the instance - when it is zero, the instance is deallocated.
This means that all references to an already owned instance must either be weak references, or ownership must be
specifically passed to the new reference, using the ownership transfer operator (see Ownership transfer expressions).

2.4.3 Pointer types

Pointer types are of great importance. Pointer types are value types, whose instances are references to some other data
instance. They are therefore not actual references, and will never own the instance that they indirectly refer to. See
Pointer types.

2.4. References and ownership 11



Vala Reference Manual, Release 0.57.0.298-a8cae1

12 Chapter 2. Concepts



CHAPTER

THREE

TYPES

A “type”, loosely described, is just an abstract set of 0 or more data fields. A type may be instantiated by creating an
entity that contains values that map to the fields of the type. In Vala, a type generally consists of:

• A type name, which is used in various contexts in Vala code to signify an instance of the type.

• A data structure that defines how to represent an instance of the type in memory.

• A set of methods that can be called on an instance of the type.

These elements are combined as the definition of the type. The definition is given to Vala in the form of a declaration,
for example a class declaration.

Vala supports three kinds of data types: value types, reference types, and meta types. Value types include simple types
(e.g. char, int, and float), enum types, and struct types. Reference types include object types, array types, delegate
types, and error types. Type parameters are parameters used in generic types.

Value types differ from reference types in that there is only ever one variable or field that refers to each instance, whereas
variables or fields of the reference types store references to data which can also be referred to by other variable or fields.
When two variables or fields of a reference type reference the same data, changes made using one identifier are visible
when using the other. This is not possible with value types.

Meta types are created automatically from other types, and so may have either reference or value type semantics.

type:
value-type
reference-type
meta-type

meta-type:
parameterised-type
nullable-type
pointer-type

3.1 Value types

Instances of value types are stored directly in variables or fields that represent them. Whenever a value type instance
is assigned to another variable or field, the default action is to duplicate the value, such that each identifier refers to a
unique copy of the data, over which it has ownership. When a value type is instantiated in a method, the instance is
created on the stack.

value-type:
fundamental-struct-type

13



Vala Reference Manual, Release 0.57.0.298-a8cae1

user-defined-struct-type
enumerated-type

fundamental-struct-type:
integral-type
floating-point-type
bool

integral-type:
char
uchar
short
ushort
int
uint
long
ulong
size_t
ssize_t
int8
uint8
int16
uint16
int32
uint32
int64
uint64
unichar

floating-point-type:
float
double

Where a literal is indicated, this means the actual type name of a built in struct type is given. The definition of these
types is included in Vala, so these types are always available.

3.1.1 Struct types

A struct type is one that provides just a data structure and some methods that act upon it. Structs are not polymorphic,
and cannot have advanced features such as signals or properties. See Structs for documentation on how to define structs
and more details about them. See Struct instantiation for how to instantiate structs.

Each variable or field to which a struct stype instance is assigned gains a copy of the data, over which it has ownership.
However, when a struct type instance is passed to a method, a copy is not made. Instead a reference to the instance is
passed. This behaviour can be changed by declaring the struct to be a simple type.

14 Chapter 3. Types



Vala Reference Manual, Release 0.57.0.298-a8cae1

3.1.2 Fundamental types

In Vala, the fundamental types are defined as struct types whose data structure is known internally to Vala. They
have one anonymous field, which is automatically accessed when required. All fundamental value types are defined as
simple types, and so whenever the instance is assigned to a variable or field or passed as a function parameter, a copy
of the data is made.

The fundamental value types fall into one of three categories: the boolean type, integral types, and floating point types.

3.1.3 Integral types

Integral types can contain only integers. They are either signed or unsigned, each of which is considered a different
type, though it is possible to cast between them when needed.

Some types define exactly how many bits of storage are used to represent the integer, others depend of the environment.
long, int short map to C data types and therefore depend on the machine architecture. char is 1 byte. unichar is 4 bytes,
i.e. large enough to store any UTF-8 character.

All these types can be instantiated using a literal expression, see Literal expressions.

3.1.4 Floating point types

Floating point types contain real floating point numbers in a fixed number of bits (see IEEE 754).

All these types can be instantiated using a literal expression, see Literal expressions.

3.1.5 The bool type

Can have values of true of false. Although there are only two values that a bool instance can take, this is not an
enumerated type. Each instance is unique and will be copied when required, the same as for the other fundamental
value types.

This type can be instantiated using literal expressions, see Literal expressions.

3.1.6 Enumerated types

An enumerated type is one in which all possible values that instances of the type can hold are declared with the type.
In Vala enumerated types are real types, and will not be implicitly converted. It is possible to explicitly cast between
enumerated types, but this is not generally advisable. When writing new code in Vala, don’t rely on being able to cast
in this way.

A variation on an enumerated type is a flag type. This represents a set of flags, any number of which can be combined
in one instance of the flag type, in the same fashion as a bitfield in C.

See Enumerated types (Enums) for documentation on defining and using enumerated types.

3.1. Value types 15



Vala Reference Manual, Release 0.57.0.298-a8cae1

3.2 Reference types

Instances of reference types are always stored on the heap. Variables of reference types contain references to the
instances, rather than the instances themselves. Assigning an instance of a reference type to a variable or field will not
make a copy of the data, instead only the reference to the data is copied. This means that both variables will refer to
the same data, and so changes made to that data using one of the references will be visible when using the other.

Instances of any reference type can be assigned a variable that is declared “weak”. This implies that the variable must
not be known to the type instance. A reference counted type does not increase its reference count after being assigned
to a weak variable: a weak variable cannot take ownership of an instance.

reference-type:
classed-type
array-type
delegate-type
error-type
string

classed-type:
simple-classed-type
type-instance-classed-type
object-classed-type

simple-classed-type:
user-defined-simple-classed-type

type-instance-classed-type:
user-defined-type-instance-classed-type

object-classed-type:
user-defined-object-classed-type

array-type:
non-array-type []
non-array-type [ dimension-separators ]

non-array-type:
value-type
classed-type
delegate-type
error-type

dimension-separators:
,
dimension-separators ,

delegate-type:
user-defined-delegate-type

16 Chapter 3. Types



Vala Reference Manual, Release 0.57.0.298-a8cae1

error-type:
user-defined-error-type

3.2.1 Classed types

A class definition introduces a new reference type - this is the most common way of creating a new type in Vala. Classes
are a very powerful mechanism, as they have features such as polymorphism and inheritance. Full discussion of classes
is found at Classes.

Most classed types in Vala are reference counted. This means that every time a classed type instance is assigned to
a variable or field, not only is the reference copied, but the instance also records that another reference to it has been
created. When a field or variable goes out of scope, the fact that a reference to the instance has been removed is also
recorded. This means that a classed type instance can be automatically removed from memory when it is no longer
needed. The only classed types that are not reference counted are compact classes.. Memory management is discussed
at Memory management. If the instance is not of a reference counted type, then the ownership must be explicitly
transferred using the # operator - this will cause the original variable to become invalid. When a classed-type instance
is passed to a method, the same rules apply. The types of classes available are discussed at Types of class.

3.2.2 Array types

TODO: Check correctness.

An array is a data structure that can contains zero or more elements of the same type, up to a limit defined by the type.
An array may have multiple dimensions; for each possible set of dimensions a new type is implied, but there is a meta
type available that describes an array of any size with the same number of dimensions, i.e. int[1] is not the same type
as int[2], while int[] is the same type as either.

A size can be retrieved from an array using the length member, this returns an int if the array has one dimension or
an int[] if the array contains several dimensions.

You can also move or copy and array using respectively the move and copy members.

For single-dimension arrays, a resize member is also available to change the length of the array.

See Array instantiation for how to instantiate an array type.

3.2.3 Delegate types

A delegate is a data structure that refers to a method. A method executes in a given scope which is also stored, meaning
that for instance methods a delegate will contain also a reference to the instance.

Delegates are technically a referenced type, but since methods are immutable, this distinction is less important than for
other types. Assigning a delegate to a variable or field cannot copy the method indicated, and no delegate is able to
change the method in any way.

See Delegates for full documentation.

3.2. Reference types 17



Vala Reference Manual, Release 0.57.0.298-a8cae1

3.2.4 Error Types

Instances of error types represent recoverable runtime errors. All errors are described using error domains, a type of
enumerated value, but errors themselves are not enumerated types. Errors are discussed in detail in several sections of
this documentation, see: Errors, Error domains and Methods.

3.2.5 Strings

Vala has built in support for Unicode strings, via the fundamental string type. This is the only fundamental type that
is a reference type. Like other fundamental types, it can be instantiated with a literal expression (Literal expressions.)
Strings are UTF-8 encoded, the same as Vala source files, which means that they cannot be accessed like character
arrays in C - each Unicode character is not guaranteed to be stored in just one byte. Instead the string fundamental
struct type (which all strings are instances of) provides access methods along with other tools.

While strings are technically a reference type, they have the same default copy semantics as structs - the data is copied
whenever a string value is assigned to a variable or field, but only a reference is passed as a parameter to a method.
This is required because strings are not reference counted, and so the only way for a variable or field to be able to take
ownership of a string is by being assigned a copy of the string. To avoid this behaviour, string values can be assigned
to weak references (in such a case no copy is made).

The concept of ownership is very important in understanding string semantics. For more details see References and
ownership.

3.3 Parameterised types

TODO: Casting.

Vala allows definitions of types that can be customised at runtime with type parameters. For example, a list can be
defined so that it can be instantiated as a list of ints, a list of Objects, etc. This is achieved using generic declarations.
See Generics.

3.4 Nullable types

The name of a type can be used to implicitly create a nullable type related to that type. An instance of a nullable type
T? can either be a value of type T or null.

A nullable type will have either value or reference type semantics, depending on the type it is based on.

3.5 Pointer types

The name of a type can be used to implicitly create a pointer type related to that type. The value of a variable declared
as being of type T* represents the memory address of an instance of type T. The instance is never made aware that its
address has been recorded, and so cannot record the fact that it is referred to in this way.

Instances of any type can be assigned to a variable that is declared to be a pointer to an instance of that type. For
referenced types, direct assignment is allowed in either direction. For value types the pointer-to operator “&” is required
to assign to a pointer, and the pointer-indirection operator “*” is used to access the instance pointed to. See Pointer
expressions.

The void* type represents a pointer to an unknown type. As the referent type is unknown, the indirection operator
cannot be applied to a pointer of type void*, nor can any arithmetic be performed on such a pointer. However, a pointer

18 Chapter 3. Types



Vala Reference Manual, Release 0.57.0.298-a8cae1

of type void* can be cast to any other pointer type (and vice-versa) and compared to values of other pointer types. See
Type operations.

A pointer type itself has value type semantics.

3.6 Type conversions

There are two types if type conversions possible in Vala, implicit conversions and explicit casts. In expressions, Vala
will often convert fundamental types in order to make calculations possible. When the default conversion is not what
you require, you can cast explicitly so that all operands are of compatible types. See Expressions for details of automatic
conversions.

Vala will also automatically perform conversions related to polymorphism where the required cast is unambiguous
and can be inferred from the context. This allows you to use a classed-type instance when an instance of any of its
superclasses or implemented interfaces is required. Vala will never automatically cast to a subtype, as this must be
done explicitly. See Object oriented programming, see Classes.

For explicit casting expressions, see Type operations.

3.6. Type conversions 19



Vala Reference Manual, Release 0.57.0.298-a8cae1

20 Chapter 3. Types



CHAPTER

FOUR

EXPRESSIONS

Expressions are short pieces of code that define an action that should be taken when they are reached during a program’s
execution. Such an operation can be arithmetical, calling a method, instantiating a type, and so on. All expressions
evaluate to a single value of a particular type - this value can then be used in another expression, either by combing the
expressions together, or by assigning the value to an identifier.

When expressions are combined together (e.g. add two numbers, then multiply the result by another: 5 + 4 * 3), then the
order in which the sub-expressions are evaluated becomes significant. Parentheses are used to mark out which expres-
sions should be nested within others, e.g. (5 + 4) * 3 implies the addition expression is nested inside the multiplication
expression, and so must be evaluated first.

When identifiers are used in expressions they evaluate to their value, except when used in assignment. The left handed
side of an assignment are a special case of expressions where an identifier is not considered an expression in itself and
is therefore not evaluated. Some operations combine assignment with another operation (e.g. increment operations,)
in which cases an identifier can be thought of as an expression initially, and then just an identifier for assignment after
the overall expression has been evaluated.

primary-expression:
literal
template
member-access-expression
pointer-member-access-expression
element-access-expression
postfix-expression
class-instantiation-expression
array-instantiation-expression
struct-instantiation-expression
invocation-expression
sizeof-expression
typeof-expression

unary-expression:
primary-expression
sign-expression
logical-not-expression
bitwise-not-expression
prefix-expression
ownership-transfer-expression
cast-expression
pointer-expression

21



Vala Reference Manual, Release 0.57.0.298-a8cae1

expression:
conditional-expression
assignment-expression
lambda-expression

4.1 Literal expressions

Each literal expression instantiates its respective type with the value given.

Integer types. . . -?[:digit:]+

Floating point types. . . -?[:digit:]+(.[:digit:]+)?

Strings. . . “[^”n]*”. “””.*”””

Booleans. . . true|false

A final literal expression is null. This expression evaluates to a non-typed data instance, which is a legal value for any
nullable type (see Nullable types.)

4.2 Member access

To access members of another scope.

member-access-expression:
[ primary-expression . ] identifier

If no inner expression is supplied, then the identifier will be looked up starting from the current scope (for example
a local variable in a method). Otherwise, the scope of the inner expression will be used. The special identifier this
(without inner expression) inside an instance method will refer to the instance of the type symbol (class, struct, enum,
etc.).

4.3 Element access

element-access-expression:
container [ indexes ]

container:
expression

indexes:
expression [ , indexes ]

Element access can be used for:

• Accessing an element of a container at the given indexes

• Assigning an element to a container at the given indexes. In this case the element access expression is the left
handed side of an assignment.

Element access can be used on strings, arrays and types that have get and/or set methods.

22 Chapter 4. Expressions



Vala Reference Manual, Release 0.57.0.298-a8cae1

• On strings you can only access characters, it’s not possible to assign any value to an element.

• On arrays, it’s possible to both access an element or assign to an element. The type of the element access
expression is the same as the array element type.

Element access can also be used with complex types (such as class, struct, etc.) as containers:

• If a get method exists accepting at least one argument and returning a value, then indexes will be used as argu-
ments and the return value as element.

• If a set method exists accepting at least two arguments and returns void, then indexes will be used as arguments
and the assigned value as last argument..

4.4 Arithmetic operations

Binary operators, taking one argument on each side. Each argument is an expression returning an appropriate type.

Applicable, unless said otherwise, where both operands evaluate to numeric types (integer or floating point).

Where at least one operand is a of floating point type, the result will be the same type as the largest floating point type
involved. Where both operands are of integer types, the result will have the same type as the largest of the integer types
involved.

additive-expression:
multiplicative-expression
multiplicative-expression + multiplicative-expression
multiplicative-expression - multiplicative-expression

sign-expression:
+ unary-expression
- unary-expression

Adds/Subtracts the second argument to/from the first. Negations is equivalent to subtraction the operand from 0.

Overflow?

Multiplication/Division:

multiplicative-expression:
unary-expression
unary-expression * unary-expression
unary-expression / unary-expression
unary-expression % unary-expression

Multiplies/divides the first argument by the second.

If both operands are of integer types, then the result will be the quotient only of the calculation (equivalent to the precise
answer rounded down to an integer value.) If either operand is of a floating point type, then the result will be as precise
as possible within the boundaries of the result type (which is worked out from the basic arithmetic type rules.)

4.4. Arithmetic operations 23



Vala Reference Manual, Release 0.57.0.298-a8cae1

4.5 Relational operations

Result in a value of bool type.

Applicable for comparing two instances of any numeric type, or two instances of string type. Where numeric with at
least one floating point type instance, operands are both converted to the largest floating point type involved. Where
both operands are of integer type, both are converted to the largest integer type involved. When both are strings, they
are lexically compared somehow.

equality-expression:
relational-expression
relational-expression == relational-expression
relational-expression != relational-expression

relational-expression:
shift-expression
shift-expression < relational-expression
shift-expression <= relational-expression
shift-expression > relational-expression
shift-expression >= relational-expression
is-expression
as-expression

4.6 Increment/decrement operations

postfix-expression:
primary-expression ++
primary-expression –

prefix-expression:
++ unary-expression
– unary-expression

Postfix and prefix expressions:

1 var postfix = i++;
2 var prefix = --j;

are equivalent to:

1 var postfix = i;
2 i += 1;
3

4 j -= 1;
5 var prefix = j;

24 Chapter 4. Expressions



Vala Reference Manual, Release 0.57.0.298-a8cae1

4.7 Logical operations

Applicable to boolean type operands, return value is of boolean type. No non boolean type instances are automatically
converted.

logical-or-expression:
logical-and-expression || logical-and-expression

Documentation

logical-and-expression:
contained-in-expression && contained-in-expression

Documentation

logical-not-expression:
! expression

4.8 Bitwise operations

bitwise-or-expression:
bitwise-xor-expression | bitwise-xor-expression

bitwise-xor-expression:
bitwise-and-expression ^ bitwise-and-expression

bitwise-and-expression:
equality-expression & equality-expression

bitwise-not-expression:
~ expression

Documentation

shift-expression:
additive-expression << additive-expression
additive-expression >> additive-expression

Shifts the bits of the left argument left/right by the number represented by the second argument.

Undefined for shifting further than data size, e.g. with a 32 bit integer. . .

Documentation

4.7. Logical operations 25



Vala Reference Manual, Release 0.57.0.298-a8cae1

4.9 Assignment operations

Value assigned to identifier on left. Type must match.

When assignment includes another operation natural result type must match the declared type of variable which is the
left hand side of the expression. e.g. Let a be an int instance with the value 1, a += 0.5 is not allowed, as the natural
result type of 1 + 0.5 is a float, not an int.

assignment-expression:
simple-assignment-expression
number-assignment-expression

simple-assignment-expression:
conditional-expression = expression

number-assignment-expression:
conditional-expression += expression
conditional-expression -= expression
conditional-expression *= expression
conditional-expression /= expression
conditional-expression %= expression
conditional-expression |= expression
conditional-expression &= expression
conditional-expression ^= expression
conditional-expression <<= expression
conditional-expression >>= expression

A simple assignment expression assigns the right handed side value to the left handed side. It is necessary that the left
handed side expression is a valid lvalue. Other assignments:

1 result += value;
2 result <<= value;
3 ...

Are equivalent to simple assignments:

1 result = result + value;
2 result = result << value;
3 ...

4.10 Invocation expressions

invocation-expression:
[ yield ] primary-expression ( [ arguments ] )

arguments:
expression [ , arguments]

The expression can refer to any callable: a method, a delegate or a signal. The type of the expression depends upon the
return type of the callable symbol. Each argument expression type must be compatible against the respective callable
parameter type. If an argument is not provided for a parameter then:

26 Chapter 4. Expressions



Vala Reference Manual, Release 0.57.0.298-a8cae1

1. If the parameter has a default value, then that value will be used as argument.

2. Otherwise an error occurs.

If the callable has an ellipsis parameter, then any number of arguments of any type can be provided past the ellipsis.

Delegates. . . See Delegates

Firing a signal is basically the same. See Signals

4.11 Class instantiation

To instantiate a class (create an instance of it) use the new operator. This operator takes a the name of the class, and a
list of zero or more arguments to be passed to the creation method.

class-instantiation-expression:
new type-name ( arguments )

arguments:
expression [ , arguments ]

4.12 Struct instantiation

struct-instantiation-expression:
type-name ( arguments ) [ { initializer } ]

initializer:
field-name = expression [ , initializer ]

arguments:
expression [ , arguments ]

4.13 Array instantiation

This expression will create an array of the given size. The second approach shown below is a shorthand to the first one.

array-instantiation-expression:
new type-name [ sizes ] [ { [ initializer ] } ] { initializer }

sizes:
expression [ , sizes ]

initializer:
expression [ , initializer ]

Sizes expressions must evaluate either to an integer type or an enum value. Initializer expressions type must be com-
patible with the array element type.

4.11. Class instantiation 27



Vala Reference Manual, Release 0.57.0.298-a8cae1

4.14 Conditional expressions

Allow a conditional in a single expression.

conditional-expression:
boolean-expression [ ? conditional-true-clause : conditional-false-clause ]

boolean-expression:
coalescing-expression

conditional-true-clause:
expression

conditional-false-clause
expression

First boolean-expression is evaluated. If true, then the conditional-true-clause is evaluated, and its result is the result of
the conditional expression. If the boolean expression evaluates to false, then the conditional-false-clause is evaluated,
and its result becomes the result of the conditional expression.

4.15 Coalescing expressions

coalescing-expression:
nullable-expression [ ?? coalescing-expression ]

nullable-expression:
logical-or-expression

4.16 Flag operations

Flag types are a variation on enumerated types, in which any number of flag values can be combined in a single instance
of the flag type. There are therefore operations available to combine several values in an instance, and to find out which
values are represented in an instance.

flag-combination-expression:
expression | expression

Where both expressions evaluate to instances of the same flag type, the result of this expression is a new instance of
the flag type in which all values represented by either operand are represented.

flag-recombination-expression:
expression ^ expression

Where both expressions evaluate to instances of the same flag type, the result of this expression is a new instance of
the flag type in which all values represented by exactly one of the operands are represented.

flag-separation-expression:
expression & expression

Where both expressions evaluate to instances of the same flag type, the result of this expression is a new instance of
the flag type in which all values represented by both operands are represented.

28 Chapter 4. Expressions



Vala Reference Manual, Release 0.57.0.298-a8cae1

flag-in-expression:
expression in expression

Where both expressions evaluate to instances of the same flag type, the result of this expression is a boolean. The result
will be true if the left-handed flag is set into the right-handed flags.

4.17 Type operations

is-expression:
shift-expression is type-name

Performs a runtime type check on the instance resulting from evaluating the nested expression. If the instance is an
instance of the type described (with, for example, a class or interface name,) the overall expression evaluates to true.

Casting:

cast-expression:
(!) unary-expression
( type-name ) unary-expression

A cast expression returns the instance created in the nested expression as an instance of the type described. If the nested
expression evaluates to an instance of a type that is not also an instance of the given type, the expression is not valid.
If you are not sure whether the cast is valid, instead use an “as” expression.

as-expression:
shift-expression as type-name

An “as” expression combines an “is” expression and a cast operation, with the latter depending on the former. If the
nested expression evaluates to an instance of the given type, then a cast is performed and the expression evaluates to
the result of the nested expression cast as the given type. Otherwise, the result is null.

sizeof-expression:
sizeof ( type-name )

typeof-expression:
typeof ( type-name )

4.18 Ownership transfer expressions

ownership-transfer-expression:
(owned) unary-expression

When an instance of a reference type is assigned to a variable or field, it is possible to request that the ownership of
the instance is passed to the new field or variable. The precise meaning of this depends on the reference type, for an
explanation of ownership, see References and ownership. The identifier in this expression must refer to an instance of
a reference type.

Note that similar syntax is used to define that a method parameter should take ownership of a value assigned to it. For
this, see Methods.

4.17. Type operations 29



Vala Reference Manual, Release 0.57.0.298-a8cae1

4.19 Lambda expressions

lambda-expression:
params => body

params:
[ direction ] identifier ( [ param-names ] )

param-names:
[ direction ] identifier [ , param-names ]

direction:
out
ref

body:
statement-block
expression

4.20 Pointer expressions

addressof-expression:
& unary-expression

The “address of” expression evaluates to a pointer to the inner expression. Valid inner expressions are:

• Variables (local variables, fields and parameters)

• Element access whose container is an array or a pointer

pointer-indirection-expression:
* unary-expression

The pointer indirection evaluates to the value pointed to by the inner expression. The inner expression must be a valid
pointer type and it must not be a pointer to a reference type (for example pointer indirection to a type SomeClass* is
not possible).

pointer-member-access-expression:
primary-expression -> identifier

This expression evaluates to the value of the member identified by the identifier. The inner expression must be a valid
pointer type and the member must be in the scope of the base type of the pointer type.

30 Chapter 4. Expressions



CHAPTER

FIVE

STATEMENTS

Statements define the path of execution within methods and similar constructions. They combine expressions together
with structures for choosing between different code paths, repeating code sections, etc.

statement:
empty-statement
simple-statement
statement-block
variable-declaration-statement
if-statement
switch-statement
while-statement
do-statement
for-statement
foreach-statement
return-statement
throw-statement
try-statement
lock-statement
unlock-statement
with-statement

embedded-statement:
statement

5.1 Simple statements

The Empty Statement does nothing, but is a valid statement nonetheless, and so can be used wherever a statement is
required.

empty-statement:
;

A Simple Statement consists of one a subset of expressions that are considered free-standing. Not all expressions are
allowed, only those that potentially have a useful side effect - for example, arithmetic expressions cannot form simple
statements on their own, but are allowed as part of an assignment expressions, which has a useful side effect.

simple-statement:
statement-expression ;

31



Vala Reference Manual, Release 0.57.0.298-a8cae1

statement-expression:
assignment-expression
class-instantiation-expression
struct instantiation-expression
invocation-expression

A Statement Block allows several statements to be used in a context that would otherwise only allow one.

statement-block:
{ [ statement-list ] }

statement-list:
statement [ statement-list ]

Blocks create anonymous, transient scopes. For more details about scopes, see Scope and naming.

5.2 Variable declaration

Variable Declaration Statements define a local variable in current scope. The declaration includes a type, which signifies
the variable will represent an instance of that type. Where the type can be inferred by the compiler, the type-name can
be replaced with the literal “var”

variable-declaration-statement:
variable-declaration-with-explicit-type
variable-declaration-with-explicit-type-and-initialiser
variable-declaration-with-type-inference

variable-declaration-with-explicit-type:
type-name identifier ;

variable-declaration-with-explicit-type-and-initialiser:
type-name identifier = expression ;

variable-declaration-with-type-inference:
var identifier = expression ;

Type inference is possible in any case where the variable is immediately assigned to. The type chosen will always be
the type of the assigned expression, as decided by the rules described at Expressions. It is important to realise that
the type of the variable will be fixed after the first assignment, and will not change on assigning another value to the
variable. If the variable should be created with a type other than that of the assigned expression, the expression should
be wrapped with a cast expression, provided that the cast is valid.

32 Chapter 5. Statements



Vala Reference Manual, Release 0.57.0.298-a8cae1

5.3 Selection statements

The If Statement decides whether to execute a given statement based on the value of a boolean expression. There are
two possible extensions to this model:

An else clause declares that a given statement should be run if-and-only-if the condition in the if statement fails.

Any number of “else if” clauses may appear between the “if” statement and its “else” clause (if there is one.) These
are equivalent to:

FIXME: This doesn’t work.

In simple terms, the program will test the conditions of the if statement and its “else if” clauses in turn, executing the
statement belonging to the first that succeeds, or running the else clause if every condition fails.

if-statement:
if ( boolean-expression ) embedded-statement [ elseif-clauses ] [ else embedded-statement ]

elseif-clauses:
elseif-clause
[ elseif-clauses ]

elseif-clause:
else if ( boolean-expression ) embedded-statement

The switch statement decides which of a set of statements to execute based on the value of an expression. A switch
statement will lead to the execution of one or zero statements. The choice is made by:

switch-statement:
switch ( expression ) { [ case-clauses ] [ default-clause ] }

case-clauses:
case-clause
[ case-clauses ]

case-clause:
case literal-expression : embedded-statement
break-statement

default-clause:
default : embedded-statement
break-statement

5.4 Iteration statements

Iteration statements are used to execute statements multiple times based on certain conditions. Iteration Statements
contain loop embedded statements - a superset of embedded statements which adds statements for manipulating the
iteration.

loop-embedded-statement:
loop-embedded-statement-block
embedded-statement

5.3. Selection statements 33



Vala Reference Manual, Release 0.57.0.298-a8cae1

break-statement
continue-statement

loop-embedded-statement-block:
{ [ loop-embedded-statement-list ] }

loop-embedded-statement-list:
loop-embedded-statement [ loop-embedded-statement-list ]

Both break and continue statement are types of jump statement, described in Jump Statements.

5.4.1 While Statement

The while statement conditionally executes an embedded statement zero or more times. When the while statement
is reached, the boolean expression is executed. If the boolean value is true, the embedded statement is executed and
execution returns to the while statement. If the boolean value is false, execution continues after the while statement.

while-statement:
while ( boolean-expression ) loop-embedded-statement

The do statement conditionally executes an embedded statement one or more times. First the embedded statement
is executed, and then the boolean expression is evaluated. If the boolean value is true, execution returns to the do
statement. If the boolean value is false, execution continues after the do statement.

do-statement:
do loop-embedded-statement while ( boolean-expression ) ;

5.4.2 For Statement

The for statement first evaluates a sequence of initialization expressions and then repeatedly executes an embedded
statement. At the start of each iteration a boolean expression is evaluated, with a true value leading to the execution of
the embedded statement, a false value leading to execution passing to the first statement following the for statement.
After each iteration a sequence of iteration expressions are evaluated. Executing this type of statement creates a new
transient scope, in which any variables declared in the initializer are created.

for-statement:
for ( [ for-initializer ] ; [ for-condition ] ; [ for-iterator ] ) loop-embedded-statement

for-initializer:
variable-declaration [ , expression-list ]

for-condition:
boolean-expression

for-iterator:
expression-list

34 Chapter 5. Statements



Vala Reference Manual, Release 0.57.0.298-a8cae1

5.4.3 Foreach Statement

The foreach statement enumerates the elements of a collection, executing an embedded statement for each element
of the collection. Each element in turn is assigned to a variable with the given identifier and the embedded statement
is executed. Executing this type of statement creates a new transient scope in which the variable representing the
collection element exists.

foreach-statement:
foreach ( type identifier in expression ) loop-embedded-statement

Foreach Statements are able to iterate over arrays and any class that implements the Gee.Iterable interface. This
may change in future if an Iterable interface is incorporated into GLib.

5.5 Jump Statements

Jump statements move execution to an arbitrary point, dependent on the type of statement and its location. In any of
these cases any transient scopes are ended appropriately: Scope and naming and Simple statements.

A break statement moves execution to the first statement after the nearest enclosing while, do, for, or foreach
statement.

break-statement:
break ;

A continue statement immediately moves execution the nearest enclosing while, do, for, or foreach statement.

continue-statement:
continue ;

The return statement ends the execution of a method, and therefore completes the invocation of the method. The
invocation expression has then been fully evaluated, and takes on the value of the expression in the return statement
if there is one.

return-statement:
return [ expression ] ;

The throw statement throws an exception.

throw-statement:
throw expression ;

5.6 Try Statement

The try statement provides a mechanism for catching exceptions that occur during execution of a block. Furthermore,
the try statement provides the ability to specify a block of code that is always executed when control leaves the try
statement.

For the syntax of the try statement, See Error catching.

5.5. Jump Statements 35



Vala Reference Manual, Release 0.57.0.298-a8cae1

5.7 Lock Statement

lock statements are the main part of Vala’s resource control mechanism.

FIXME: Haven’t actually written anything here about resource control.

lock-statement:
lock ( identifier ) [ embedded-statement ] ;

5.8 Unlock Statement

unlock statements are the main part of Vala’s resource control mechanism.

FIXME: Haven’t actually written anything here about resource control.

unlock-statement:
unlock ( identifier ) ;

5.9 With Statement

The with statement creates data type scoped blocks which allow implicit member access to the given expression or
declaration statement.

with_statement:
with ( [ var | unowned var | type-name) identifier = ] expression ) embedded_statement

36 Chapter 5. Statements



CHAPTER

SIX

NAMESPACES

Namespaces are named scopes (see Scope and naming). Definitions in different namespaces can use the same names
without causing conflicts. A namespace can be declared across any number of Vala source files, and there can be
multiple namespaces defined in a single Vala source file. Namespaces can be nested to any depth.

When code needs to access definitions from other namespaces, it must either refer to them using a fully qualified name,
or be written in a file with an appropriate using statement.

The simplest namespace declaration looks like this:

1 namespace NameSpaceName {
2 }

Namespace nesting is achieved either by nesting the declarations, or by providing multiple names in one declaration:

1 namespace NameSpaceName1 {
2 namespace NameSpaceName2 {
3 }
4 }
5

6 namespace NameSpaceName1.NameSpaceName2 {
7 }

6.1 The global namespace

Everything not declared within a particular namespace declaration is automatically in the global namespace. All defined
namespaces are nested inside the global namespace at some depth. This is also where the fundamental types are defined.

If there is ever a need to explicitly refer to an identifier in the global namespace, the identifier can be prefixed with
global::. This will allow you, for example, to refer to a namespace which has the same name as a local variable.

6.2 Namespace declaration

namespace-declaration:
namespace qualified-namespace-name { [ namespace-members ] }

qualified-namespace-name:
[ qualified-namespace-name . ] namespace-name

37



Vala Reference Manual, Release 0.57.0.298-a8cae1

namespace-name:
identifier

namespace-members:
namespace-member [ namespace-members ]

namespace-member:
class-declaration
abstract-class-declaration
constant-declaration
delegate-declaration
enum-declaration
errordomain-declaration
field-declaration
interface-declaration
method-declaration
namespace-declaration
struct-declaration

6.3 Members

Namespaces members exist in the namespace’s scope. They fall into two broad categories: data and definitions. Data
members are fields which contain type instances. Definitions are things that can be invoked or instantiated. Namespace
members can be declared either private or public. Public data can be accessed from anywhere, whilst private data can
only be accessed from inside the namespace. Public definitions are visible to code defined in a different namespace, and
thus can be invoked or instantiated from anywhere, private definitions are only visible to code inside the namespace,
and so can only be invoked or instantiated from there.

access-modifier:
public
private

For the types of namespace members that are not described on this page: see Classes, Structs, Delegates, Enumerated
types (Enums), and Error domains.

6.4 Fields

Variables that exist directly in a namespace are known as namespace fields. These exist only once, and within the scope
of the namespace which exists for the application’s entire run time. They are therefore similar to global variables in C
but without the risk of naming clashes.

field-declaration:
[ access-modifier ] qualified-type-name field-name [ = expression ] ;

field-name:
identifier

Fields in general are described at Variables.

38 Chapter 6. Namespaces



Vala Reference Manual, Release 0.57.0.298-a8cae1

6.5 Constants

Constants are similar to variables but can only be assigned to once. It is therefore required that the expression that
initialises the constant be executable at the time the constant comes into scope. For namespaces this means that the
expressions must be evaluable at the beginning of the application’s execution.

constant-declaration:
[ access-modifier ] const qualified-type-name constant-name = expression ;

constant-name:
identifier

6.6 The “using” statement

using statements can be used to avoid having to qualify names fully on a file-by-file basis. For all identifiers in the
same file as the using statement, Vala will first try to resolve them following the usual rules (see Scope and naming). If
the identifier cannot be resolved in any scope, each namespace that is referenced in a using will be searched in turn.

using-statement:
using namespace-list ;

namespace-list:
qualified-namespace-name [ , namespace-list ]

There can be any number of using statements in a Vala source file, but they must all appear outside any other decla-
rations. Note that using is not like import statements in other languages - it does not load anything, it just allows for
automatic searching of namespace scopes, in order to allow frugal code to be written.

Most code depends on members of the GLib namespace, and so many source files begin with:

1 using GLib;

TODO: Include examples.

6.5. Constants 39



Vala Reference Manual, Release 0.57.0.298-a8cae1

40 Chapter 6. Namespaces



CHAPTER

SEVEN

METHODS

TODO: Do we really need this discussion? Are we introducing Vala, or general programming?

A method is an executable statement block that can be identified in one or more ways (i.e. by a name, or any number of
delegate instances). A method can be invoked with an optional number of parameters, and may return a value. When
invoked, the method’s body will be executed with the parameters set to the values given by the invoker. The body is run
in sequence until the end is reached, or a return statement is encountered, resulting in a return of control (and possibly
some value, in the case of a return) to the invoker.

There are various contexts that may contain method declarations (see Namespaces, Classes, Interfaces, Structs). A
method is always declared inside one of these other declarations, and that declaration will mark the parent scope that
the method will be executed within. See Scope and naming.

The Classes section of this documentation talks about both methods and abstract methods. It should be noted that the
latter are not truly methods, as they cannot be invoked. Instead, they provide a mechanism for declaring how other
methods should be defined. See Classes for a description of abstract methods and how they are used.

The syntax for invoking a method is described on the expressions page (see Invocation expressions).

7.1 Parameter directions

The basics of method parameter semantics are described on the concepts page (see Variables). This basic form of
parameter is technically an “in” parameter, which is used to pass data needed for the method to operate. If the parameter
is of a reference type, the method may change the fields of the type instance it receives, but assignments to the parameter
itself will not be visible to the invoking code. If the parameter is of a value type, which is not a fundamental type, the
same rules apply as for a reference type. If the parameter is of a fundamental type, then the parameter will contain a
copy of the value, and no changes made to it will be visible to the invoking code.

If the method wishes to return more than one value to the invoker, it should use “out” parameters. Out parameters do
not pass any data to the method - instead the method may assign a value to the parameter that will be visible to the
invoking code after the method has executed, stored in the variable passed to the method. If a method is invoked passing
a variable which has already been assigned to as an out parameter, then the value of that variable will be dereferenced
or freed as appropriate. If the method does not assign a value to the parameter, then the invoker’s variable will end with
a value of “null”.

The third parameter type is a “ref” argument (equivalent to “inout” in some other languages.) This allows the method
to receive data from the invoker, and also to assign another value to the parameter in a way that will be visible to the
invoker. This functions similarly to “out” parameters, except that if the method does not assign to the parameter, the
same value is left in the invoker’s variable.

41



Vala Reference Manual, Release 0.57.0.298-a8cae1

7.2 Method declaration

The syntax for declaring a method changes slightly based on what sort of method is being declared. This section shows
the form for a namespace method, Vala’s closest equivalent to a global method in C. Many of the parts of the declaration
are common to all types, so sections from here are referenced from class methods, interface methods, etc.

method-declaration:
[ access-modifier ] return-type qualified-method-name ( [ params-list ] ) [ throws error-list ]
method-contracts { statement-list }

return-type:
type
void

qualified-method-name:
[ qualified-namespace-name . ] method-name

method-name:
identifier

params-list:
parameter [ , params-list ]

parameter:
[ parameter-direction ] type identifier

parameter-direction:
ref
out

error-list:
qualified-error-domain [ , error-list ]

method-contracts:
[ requires ( expression ) ] [ ensures ( expression ) ]

For more details see Contract programming.

42 Chapter 7. Methods



Vala Reference Manual, Release 0.57.0.298-a8cae1

7.3 Invocation

See Invocation expressions.

7.4 Scope

The execution of a method happens in a scope created for each invocation, which ceases to exist after execution is
complete. The parent scope of this transient scope is always the scope the method was declared in, regardless of where
it is invoked from.

Parameters and local variables exist in the invocation’s transient scope. For more on scoping see Scope and naming.

7.5 Lambdas

As Vala supports delegates, it is possible to have a method that is identified by a variable (or field, or parameter.) This
section discusses a Vala syntax for defining inline methods and directly assigning them to an identifier. This syntax
does not add any new features to Vala, but it is a lot more succinct than the alternative (defining all methods normally,
in order to assign them to variables at runtime). See Delegates.

Declaring an inline method must be done with relation to a delegate or signal, so that the method signature is already
defined. Parameter and return types are then learned from the signature. A lambda definition is an expression that
returns an instance of a particular delegate type, and so can be assigned to a variable declared for the same type. Each
time that the lambda expression is evaluated it will return a reference to exactly the same method, even though this is
never an issue as methods are immutable in Vala.

lambda-declaration:
( [ lambda-params-list ] ) => { statement-list }

lambda-params-list:
identifier [ , lambda-params-list ]

An example of lambda use:

1 delegate int DelegateType (int a, string b);
2

3 int use_delegate (DelegateType d, int a, string b) {
4 return d (a, b);
5 }
6

7 int make_delegate () {
8 DelegateType d = (a, b) => {
9 return a;

10 };
11 use_delegate (d, 5, "test");
12 }

7.3. Invocation 43



Vala Reference Manual, Release 0.57.0.298-a8cae1

7.6 Contract programming

Vala supports basic contract programming features. A method may have preconditions (requires) and postconditions
(ensures) that must be fulfilled at the beginning or the end of a method respectively:

1 double method_name (int x, double d)
2 requires (x > 0 && x < 10)
3 requires (d >= 0.0 && d <= 1.0)
4 ensures (result >= 0.0 && result <= 10.0) {
5 return d * x;
6 }

result is a special variable representing the return value.

For example, if you call method_name with arguments 5 and 3.0, it will output a CRITICAL message and return 0.

1 void main () {
2 stdout.printf ("%i\n", method_name (5, 3.0));
3 }

Output:

CRITICAL **: 03:29:00.588: method_name: assertion 'd >= 0.0 && d <= 1.0' failed
0

Vala allows you to manage the safety of issued messages at 6 levels: ERROR, CRITICAL, INFO, DEBUG, WARNING,
MESSAGE. For example, the following code will cause a runtime error.

1 Log.set_always_fatal (LogLevelFlags.LEVEL_CRITICAL | LogLevelFlags.LEVEL_WARNING);
2 stdout.printf ("%i\n", method_name (5, 3.0));

44 Chapter 7. Methods

http://en.wikipedia.org/wiki/Contract_programming


CHAPTER

EIGHT

DELEGATES

A delegate declaration defines a method type: a type that can be invoked, accepting a set of values of certain types, and
returning a value of a set type. In Vala, methods are not first-class objects, and as such cannot be created dynamically;
however, any method can be considered to be an instance of a delegate’s type, provided that the method signature
matches that of the delegate.

Methods are considered to have an immutable reference type. Any method can be referred to by name as an expression
returning a reference to that method - this can be assigned to a field (or variable, or parameter), or else invoked directly
as a standard method invocation (see Invocation expressions).

8.1 Types of delegate

All delegate types in Vala are defined to be either static or instance delegates. This refers to whether the methods that
may be considered instances of the delegate type are instance members of classes or structs, or not.

To assign an instance of an instance delegate, you must give the method name qualified with an identifier that refers
to a class or struct instance. When an instance of an instance delegate is invoked, the method will act as though the
method had been invoked directly: the “this” keyword will be usable, instance data will be accessible, etc.

Instance and static delegate instances are not interchangeable.

8.2 Delegate declaration

The syntax for declaring a delegate changes slightly based on what sort of delegate is being declared. This section
shows the form for a namespace delegate. Many of the parts of the declaration are common to all types, so sections
from here are referenced from class delegates, interface delegates, etc.

delegate-declaration:
[ access-modifier ] delegate return-type qualified-delegate-name ( method-params-list ) [ throws
error-list ] ;

qualified-delegate-name:
[ qualified-namespace-name . ] delegate-name

delegate-name:
identifier

Parts of this syntax are based on the respective sections of the method declaration syntax (see Methods for details).

By default, delegates are instance delegates. To declare a static delegate, add the annotation `[CCode (has_target
= false)]`; see the examples below. (Static delegates used to be declared by adding the keyword `static` before

45



Vala Reference Manual, Release 0.57.0.298-a8cae1

`delegate` instead of using the annotation. This syntax is still accepted by the compiler, but will cause a warning to
be given.)

8.3 Using delegates

A delegate declaration defines a type. Instances of this type can then be assigned to variables (or fields, or parameters)
of this type. Vala does not allow creating methods at runtime, and so the values of delegate-type instances will be
references to methods known at compile time. To simplify the process, inlined methods may be written (see Lambdas).

To call the method referenced by a delegate-type instance, use the same notation as for calling a method; instead of
giving the method’s name, give the identifier of the variable, as described in Invocation expressions.

8.4 Examples

Defining delegates:

1 // Static delegate taking two ints, returning void:
2 [CCode (has_target = false)]
3 void DelegateName (int a, int b);
4

5 // Instance delegate with the same signature:
6 void DelegateName (int a, int b);
7

8 // Static delegate which may throw an error:
9 [CCode (has_target = false)]

10 void DelegateName () throws GLib.Error;

Invoking delegates, and passing as parameters.

1 void f1 (int a) { stdout.printf ("%d\n", a); }
2 ...
3 void f2 (DelegateType d, int a) {
4 d (a);
5 }
6 ...
7 f2 (f1, 5);

Instance delegates:

1 class Test : Object {
2 private int data = 5;
3 public void method (int a) {
4 stdout.printf ("%d %d\n", a, this.data);
5 }
6 }
7

8 delegate void DelegateType (int a);
9

10 void main () {
11 var t = new Test ();
12 DelegateType d = t.method;

(continues on next page)

46 Chapter 8. Delegates



Vala Reference Manual, Release 0.57.0.298-a8cae1

(continued from previous page)

13

14 d (1);
15 }

With Lambda:

1 f2 (a => { stdout.printf ("%d\n", a); }, 5);

8.4. Examples 47



Vala Reference Manual, Release 0.57.0.298-a8cae1

48 Chapter 8. Delegates



CHAPTER

NINE

ERRORS

Vala Error handling is just for recoverable runtime errors, anything that can be reasonably foreseen should not be
handled with errors, e.g. passing the wrong args to a method. In that example, a better action is to state that the
method’s result is undefined on illegal input, and use method contracts or assertions to catch potential problems during
development: See Contract programming. A more suitable use for errors would be reporting missing files, which of
course cannot be detected until the program is running.

A method may declare that it throws methods from any number of error domains. Error domains are groups of related
errors, each of which is denoted by a unique symbol in much the same way an enumerated type, see Error domains
for declaration syntax. In Vala it is not allowed to throw arbitrary data as in C++, and there is no class for errors, as in
Java.

No error can be thrown must either be caught or declared as being thrown.

When a method declares it may thrown an error, the invoker may choose to either catch the error (should one be thrown),
or ignore it, meaning it will be thrown on to that methods caller. In the latter case, the method failing to catch the error
must also be declared to throw that type of error. Errors can only be caught when the method throwing it is invoked
within the try block of a try statement. A try statement, with its associated catch blocks, can potentially catch all errors
thrown in its scope, either with catch blocks for all error domains from which a thrown error might come, or with a
generic catch block to catch any error.

When an error is first thrown, the “throw” statement is considered the same as a method which from which an error has
been thrown. This means that it is possible to catch errors locally, but this is not good practise. The only proper use of
this functionality is to use a finally block to free resources before the error is thrown from the method.

When an error is thrown, the following sequence of events happens:

NB: finally clauses are always run, regardless of if error is thrown and/or handled.

9.1 Error throwing

Throwing an error is done with the following syntax:

throw-statement:
throw error-description ;

error-description:
identifier
error-creation-expression

error-creation-expression:
new qualified-error-type ( message-expression )

49



Vala Reference Manual, Release 0.57.0.298-a8cae1

qualified-error-type:
qualified-error-domain . error-type

qualified-error-domain:
[ qualified-namespace-name . ] error-domain-name

That is, throw an error that has already been created and can be identified by a name, or a new error created with a
textual description. The message-expression is any expression that evaluates to a instance of the string type.

9.2 Error catching

The syntax of the try statement:

try-statement:
try statement-block catch-clauses
try statement-block [catch-clauses] finally-clause

catch-clauses:
[ specific-catch-clauses ] general-catch-clause

specific-catch-clauses:
specific-catch-clause [ specific-catch-clauses ]

specific-catch-clause:
catch ( qualified-error-type identifier ) statement-block

general-catch-clause:
catch statement-block

finally-clause:
finally statement-block

In the statement block scope of each catch clause, the error is assigned to a variable with the identifier given.

9.3 Examples

Demonstrating. . .

1 errordomain ErrorType1 {
2 CODE_1A
3 }
4

5 errordomain ErrorType2 {
6 CODE_2A
7 }
8

9 void thrower () throws ErrorType1, ErrorType2 {
(continues on next page)

50 Chapter 9. Errors



Vala Reference Manual, Release 0.57.0.298-a8cae1

(continued from previous page)

10 throw new ErrorType2.CODE_1A ("Error");
11 }
12

13 void catcher () throws ErrorType2 {
14 try {
15 thrower ();
16 } catch (ErrorType1 ex) {
17 // Deal with ErrorType1
18 } finally {
19 // Tidy up
20 }
21 }
22

23 void main () {
24 try {
25 catcher ();
26 } catch (ErrorType2 ex) {
27 // Deal with ErrorType2
28 }
29 }

9.3. Examples 51



Vala Reference Manual, Release 0.57.0.298-a8cae1

52 Chapter 9. Errors



CHAPTER

TEN

CLASSES

A class is definition of a data type. A class can contain fields, constants, methods, properties, and signals. Class types
support inheritance, a mechanism whereby a derived class can extend and specialize a base class.

The simplest class declaration looks like this:

1 class ClassName {
2 }

As class types support inheritance, you can specify a base class you want to derive from. A derived class is-a superclass.
It gets access to some of its methods etc. It can always be used in place of a and so on. . . .

No classes can have multiple base classes, however GObject subclasses may implement multiple interfaces. By imple-
menting an interface, a classed type has an is-a relationship with an interface. Whenever an instance of that interface
is expected, an instance of this class will do.

10.1 Types of class

Vala supports three different types of class:

• GObject subclasses are any classes derived directly or indirectly from GLib.Object. This is the most powerful
type of class, supporting all features described in this page. This means signals, managed properties, interfaces
and complex construction methods, plus all features of the simpler class types.

• Fundamental GType classes are those either without any superclass or that don’t inherit at any level from
GLib.Object. These classes support inheritance, interfaces, virtual methods, reference counting, unmanaged
properties, and private fields. They are instantiated faster than GObject subclasses but are less powerful - it isn’t
recommended in general to use this form of class unless there is a specific reason to.

• Compact classes, so called because they use less memory per instance, are the least featured of all class types.
They are not registered with the GType system and do not support reference counting, virtual methods, or private
fields. They do support unmanaged properties. Such classes are very fast to instantiate but not massively useful
except when dealing with existing libraries. They are declared using the Compact attribute on the class, See

Any non-compact class can also be defined as abstract. An abstract class cannot be instantiated and is used as a base
class for derived classes.

53



Vala Reference Manual, Release 0.57.0.298-a8cae1

10.2 Types of class members

There are three fundamentally different types of class members, instance, class and static.

• Instance members are held per instance of the class. That is, each instance has its own copies of the members in
its own instance scope. Changes to instance fields will only apply to that instance, calling instance methods will
cause them to be executed in the scope of that instance.

• Class members are shared between all instances of a class. They can be accessed without an instance of the class,
and class methods will execute in the scope of the class.

• Static members are shared between all instances of a class and any sub-classes of it. They can be accessed without
an instance of the class, and static methods will execute in the scope of the class.

The distinction between class and static members is not common to other object models. The essential difference is that
a sub-class will receive a copy of all its base classes’ class members. This is opposed to static members, of which there
is only one copy - sub classes access can their base classes’ static members because they are automatically imported
into the class’ scope.

10.3 Class scope

Class scope is more complicated than other scopes, but conceptually the same. A class has a scope, which consists
of its static and class members, as describe above. When an instance of the class is created, it is given its own scope,
consisting of the defined instance members, with the class’ scope as its parent scope.

Within the code of a class, the instance and class scopes are automatically searched as appropriate after the local scope,
so no qualification is normally required. When there is a conflict with a name in the local scope, the this scope can
be used, for example:

1 class ClassName {
2 int field_name;
3 void function_name (field_name) {
4 this.field_name = field_name;
5 }
6 }

When a name is defined in a class which conflicts with one in a subclass, the base scope can be used, to refer to the
scope of the subclass.

10.4 Class member visibility

All class members have a visibility. Visibility is declared using the following mutually exclusive modifiers:

class-member-visibility-modifier:
private
protected
internal
public

This defines whether the member is visible to code in different locations:

• “private” asserts that the member will only be visible to code that is within this class declaration

54 Chapter 10. Classes



Vala Reference Manual, Release 0.57.0.298-a8cae1

• “protected” asserts that the member will be visible to any code within this class, and also to any code that is in a
subclass of this class

• “internal” asserts that the member should be visible to any code in the project, but excludes the member from
the public API of a shared object

• “public” asserts that the member should be visible to any code, including the public API of a shared object

Note: C Note

A field or method’s protected status cannot be enforced in the C translation of a Vala library.

10.5 Class declaration

class-declaration:
[ access-modifier ] class qualified-class-name [ inheritance-list ] { [ class-members ] }

qualified-class-name:
[ qualified-namespace-name . ] class-name

class-name:
identifier

inheritance-list:
: superclasses-and-interfaces

superclasses-and-interfaces:
( qualified-class-name | qualified-interface-name ) [ , superclasses-and-interfaces ]

class-members:
class-member [ class-members ]

class-member:
class-creation-method-declaration
class-constructor-declaration
class-destructor-declaration
class-constant-declaration
class-delegate-declaration
class-enum-declaration
class-instance-member
class-class-member
class-static-member
inner-class-declaration

class-constructor-declaration:
class-instance-constructor-declaration
class-class-constructor-declaration

10.5. Class declaration 55



Vala Reference Manual, Release 0.57.0.298-a8cae1

class-static-constructor-declaration

class-instance-member:
class-instance-field-declaration
class-instance-method-declaration
class-instance-property-declaration
class-instance-signal-declaration

class-class-member:
class-class-field-declaration
class-class-method-declaration
class-class-property-declaration

class-static-member:
class-static-field-declaration
class-static-method-declaration
class-static-property-declaration

inner-class-declaration:
[ access-modifier ] class class-name [ inheritance-list ] { [ class-members ] }

In Vala, a class must have either one or zero superclasses, where have zero superclasses has the result described in
Types of class section. A class must meet all the prerequisites defined by the interfaces it wishes to implement, by
implementing prerequisite interfaces or inheriting from a particular class. This latter requirement means it is potentially
possible to have two interfaces that cannot be implemented by a single class.

Note:

• Note: Interfaces are only supported for GType classes. Compact classes have access only to a limited form of
inheritance, whereby they may inherit from exactly one or zero other compact classes.

When declaring which class, if any, a new class subclasses, and which interfaces it implements, the names of those
other classes or interfaces can be qualified relative to the class being declared. This means that, for example, if the
class is declared as “class foo.Bar” (class “Bar” in namespace “foo”) then it may subclass class “Base” in namespace
“foo” simply with “class foo.Bar : Base”.

If an access modifier for the class is not given, the default “internal” is used.

It is possible to declare a class definition to be “abstract.” An abstract class is one they may not be instantiated, instead it
first be subclassed by a non-abstract (“concrete”) class. An abstract class declaration may include abstract class instance
members. These act as templates for methods or properties that must be implemented in all concrete subclasses of the
abstract class. It is thus guaranteed that any instance of the abstract class (which must be in fact an instance of a concrete
subclass) will have a method or property as described in the abstract class definition.

abstract-class-declaration:
[ access-modifier ] abstract class qualified-class-name [ inheritance-list ] { [
abstract-class-members ] }

abstract-class-members:
class-members
class-instance-abstract-method-declaration
class-instance-abstract-property-declaration

56 Chapter 10. Classes



Vala Reference Manual, Release 0.57.0.298-a8cae1

10.6 Controlling instantiation

When a class is instantiated, data might be required from the user to set initial properties. To define which properties
should be or can be set at this stage, the class declaration should be written as:

1 class ClassName : GLib.Object {
2

3 public ClassName () {
4 }
5

6 public ClassName.with_some_quality (Property1Type property1value) {
7 this.property1 = property1value;
8 }
9 }

This example allows the ClassName class to be instantiated either setting no properties, or setting the property. The
convention is to name constructors as “with_” and then a description of what the extra properties will be used for,
though following this is optional.

class-creation-method-declaration:
[ class-member-visibility-modifier ] class-name [ . creation-method-name ] ( param-list ) {
construction-assignments }

class-name:
identifier

creation-method-name:
identifier

construction-assignments:
this . property-name = param-name ;

class-name must be the same as the name of the class. If a creation method is given an extra name, this name is also
used with instantiating the class, using the same syntax as for declaring the method, e.g. var a = new Button.
with_label ("text").

If the property being set is construct type then assignment is made before construction, else afterwards.

Any number of these are allowed, but only one with each name (including null name.)

Note:

• Note:

For a GObject derived class, only properties may be set at this stage in construction, no other processing can be
done at this time.

10.6. Controlling instantiation 57



Vala Reference Manual, Release 0.57.0.298-a8cae1

10.7 Construction

Note:

• Note:

Construction only follows this process in GObject derived classes.

During instantiation, after construction properties have been set, a series of blocks of code are executed. This is the
process that prepares the instance for use. There are three types of construct blocks that a class may define:

class-instance-constructor-declaration:
construct { statement-list }

Code in this block is executed on every instance of the class that is instantiated. It is run after construction properties
have been set.

class-class-constructor-declaration:
class construct { statement-list }

This block will be executed once at the first use of its class, and once at the first use of each subclass of this class.

class-static-constructor-declaration:
static construct { statement-list }

The first time that a class, or any subclass of it, is instantiated, this code is run. It is guaranteed that this code will run
exactly once in a program where such a class is used.

The order of execution for constructors:

class-instance-destructor-declaration:
~ class-name ( ) { statement-list }

Destruction here. When does it happen? And when for each type of class?

10.8 Class fields

Fields act as variable with a scope of either the class or a particular instance, and therefore have names and types in the
same way. Basic declarations are as:

class-instance-field-declaration:
[ class-member-visibility-modifier ] qualified-type-name field-name [ = expression ] ;

class-class-field-declaration:
[ class-member-visibility-modifier ] class qualified-type-name field-name [ = expression ] ;

class-static-field-declaration:
[ class-member-visibility-modifier ] static qualified-type-name field-name [ = expression ] ;

Initial values are optional. FIXME: how much calculation can be done here? what are the defaults?

Note:

• Note Initial values are only allowed in GObject derived classes.

58 Chapter 10. Classes



Vala Reference Manual, Release 0.57.0.298-a8cae1

10.9 Class constants

Constants defined in a class are basically the same as those defined in a namespace. The only difference is the scope
and the choice of visibilities available.

class-constant-declaration:
[ class-member-visibility-modifier ] const qualified-type-name constant-name = expression ;

10.10 Class methods

Class methods are methods bound to a particularly class or class instance, i.e. they are executed within the scope of
that class or class instance. They are declared the same way as other methods, but within the declaration of a class.

The same visibility modifiers can be used as for fields, although in this case they refer to what code can call the methods,
rather than who can see or change values.

The static modifier is applicable to methods also. A static method is independent of any instance of the class. It is
therefore only in the class scope, and may only access other static members.

class-instance-method-declaration:
[ class-member-visibility-modifier ] [ class-method-type-modifier ] return-type method-name ( [
params-list ] ) method-contracts [ throws exception-list ] { statement-list }

class-class-method-declaration:
[ class-member-visibility-modifier ] class return-type method-name ( [ params-list ] )
method-contracts [ throws exception-list ] { statement-list }

class-static-method-declaration:
[ class-member-visibility-modifier ] static return-type method-name ( [ params-list ] )
method-contracts [ throws exception-list ] { statement-list }

class-method-type-modifier:
virtual
override

Methods can be virtual, as described in Object oriented programming. Methods in Vala classes are not virtual automat-
ically, instead the “virtual” modifier must be used when it is needed. Virtual methods will only chain up if overridden
using the override keyword.

Vala classes may also define abstract methods, by writing the declaration with the “abstract” modifier and replacing the
method body with an empty statement “;”. Abstract methods are not true methods, as they do not have an associated
statement block, and so cannot be invoked. Abstract methods can only exist in abstract classes, and must be overridden
in derived classes. For this reason an abstract method is always virtual. The purpose of an abstract method is to define
methods that all non-abstract subclasses of the current definition must implement, it is therefore always allowable to
invoke the method on an instance of the abstract class, because it is required that instance must in fact be of a non-
abstract subclass.

class-instance-abstract-method-declaration:
[ class-member-visibility-modifier ] abstract return-type method-name ( [ params-list ] )
method-contracts [ throws exception-list ] ;

Note:

10.9. Class constants 59



Vala Reference Manual, Release 0.57.0.298-a8cae1

• Note

Virtual methods are not available to compact classes.

10.11 Properties

Note:

• Development Note:

Class and static properties are not yet supported in current Vala releases.

Note:

• Note

Fully managed properties are only available to GObject derived classes - these are properties that can be set
dynamically (by providing the property name at runtime) and can have attached metadata, as is often used in
the GTK+ and GNOME libraries. The other class types can have unmanaged properties, which appear similar
when using Vala, but are actually implemented using simple methods.

Properties are an enhanced version of fields. They allow custom code to be called whenever the property is retrieved
or assigned to, but may be treated as fields by external Vala code. Properties also function like methods to some extent,
and so can be defined as virtual and overridden in subclasses. Since they are also allowed in interfaces, they allow
interfaces to declare data members that implementing classes must expose (see Interfaces.)

10.11.1 Declaration

class-instance-property-declaration:
[ class-member-visibility-modifier ] [ class-method-type-modifier ] qualified-type-name
property-name { accessors [ default-value ] } ;

class-instance-abstract-property-declaration:
[ class-member-visibility-modifier ] abstract qualified-type-name property-name {
automatic-accessors } ;

class-class-property-declaration:
[ class-member-visibility-modifier ] class qualified-type-name property-name { accessors [
default-value ] } ;

class-static-property-declaration:
[ class-member-visibility-modifier ] static qualified-type-name property-name { accessors [
default-value ] } ;

property-name:
identifier

accessors:

60 Chapter 10. Classes



Vala Reference Manual, Release 0.57.0.298-a8cae1

automatic-accessors
[ getter ] [ setter ] [ property-constructor ]

automatic-accessors:
[ automatic-getter ] [ automatic-setter ] [ automatic-property-constructor ]

automatic-getter:
[ class-member-visibility-modifier ] get ;

automatic-setter:
[ class-member-visibility-modifier ] set [ construct ] ;

automatic-property-constructor:
[ class-member-visibility-modifier ] construct ;

get-accessor:
[ class-member-visibility-modifier ] get { statement-list }

set-accessor:
[ class-member-visibility-modifier ] set [ construct ] { statement-list }

property-constructor:
[ class-member-visibility-modifier ] construct { statement-list }

default-value:
default = expression ;

10.11.2 Execute Code on Setting/Getting Values

Properties can either be declared with code that will perform particular actions on get and set, or can simply declare
which actions are allowed and allow Vala to implement simple get and set methods. This second pattern (automatic
property) will result in fields being added to the class to store values that the property will get and set. If either get or
set has custom code, then the other must either be also written in full, or omitted altogether.

When a value is assigned to a property, the set block is invoked, with a parameter called value of the same type as the
property. When a value is requested from a property, the get block is invoked, and must return an instance of the same
type of the property.

10.11.3 Construct / Set Construct Block

A property may have zero or one construct blocks. This means either a set construct block or a separate construct
block. If this is the case that then the property becomes a construct property, meaning that if it is set in creation method,
it will be set (using the construct block, as opposed to any simple set block, where there is a distinction) before class
construct blocks are called.

10.11. Properties 61



Vala Reference Manual, Release 0.57.0.298-a8cae1

10.11.4 Notify Changes Signals

Managed properties may be annotated with Notify, See Attributes. This will cause the class instance to emit a notify
signal when the property has been assigned to.

10.11.5 Virtual Properties

Instance properties can be defined virtual with the same semantics as for virtual methods. If in an abstract class, an
instance property can be defined as abstract. This is done using the “abstract” keyword on a declaration that is otherwise
the same as an automatic property. It is then the responsibility of derived classes to implement the property by providing
get or set blocks as appropriate. An abstract property is automatically virtual.

10.11.6 Abstract Properties

As with methods, it is possible to declare abstract properties. These have much the same semantics as abstract methods,
i.e. all non-abstract subclasses will have to implement properties with at least the accessors defined in the abstract
property. Any set construct or construct accessor must be defined too in non-abstract classes and use override.

class-instance-abstract-property-declaration:
[ class-member-visibility-modifier ] abstract qualified-type-name property-name {
automatic-accessors } ;

10.12 Signals

Note:

• Note

Signals are only available to GObject derived classes.

Signals are a system allowing a classed-type instance to emit events which can be received by arbitrary listeners.
Receiving these events is achieved by connecting the signal to a handler, for which Vala has a specific syntax. Signals
are integrated with the GLib MainLoop system, which provides a system for queueing events (i.e. signal emissions,)
when needed - though this capability is not needed non-threaded applications.

class-instance-signal-declaration:
[ class-member-visibility-modifier ] [ class-method-type-modifier ] signal return-type signal-name
( [ params-list ] ) ;

signal-name:
identifier

Signals may also provide an extra piece of information called a signal detail. This is a single string, which can be used
as an initial hint as to the purpose of the signal emission. In Vala you can register that a signal handler should only
be invoked when the signal detail matches a given string. A typical use of signal details is in GObject’s own “notify”
signal, which says that a property of an object has changed - GObject uses the detail string to say which property has
been changed.

To assign a handler to a signal, (or register to receive this type of event from the instance), use the following form of
expression:

signal-connection-expression:

62 Chapter 10. Classes

https://developer.gnome.org/documentation/tutorials/main-contexts.html


Vala Reference Manual, Release 0.57.0.298-a8cae1

qualified-signal-name [ signal-detail ] += signal-handler

qualified-signal-name:
[ qualified-namespace-name . ] variable-identifier . signal-name

signal-detail:
[ expression ]

signal-handler:
expression
qualified-method-name
lambda-expression

This expression will request that the signal handler given be invoked whenever the signal is emitted. In order for such a
connection expression to be legal, the handler must have the correct signature. The handler should be defined to accept
as parameters the same types as the signal, but with an extra parameter before. This parameter should have the type of
the class in which the signal is declared. When a signal is emitted all handlers are called with this parameter being the
object by which the signal was emitted.

The time that an arbitrary expression is acceptable in this expression is when that expression evaluates to an instance
of a delegate type, i.e. to a method that is a legal handler for the signal. For details on delegates, see Delegates. For
details on lambda expressions see Lambdas.

Note that optional signal detail should be directly appended to the signal name, with no white space, e.g. o.
notify["name"] += ...

It is also possible to disconnect a signal handler using the following expression form:

signal-disconnection-expression:
qualified-signal-name [ signal-detail ] -= connected-signal-handler

connected-signal-handler:
expression
qualified-method-name

Note that you cannot disconnect a signal handler which was defined inline as a lambda expression and then immediately
connected to the signal. If this is the effect you really need to achieve, you must assign the lambda expression to an
identifier first, so that the lambda can be referred to again at a later time.

10.13 Class enums

Enums defined in a class are basically the same as those defined in a namespace. The only difference is the scope and
the choice of visibilities available. See Enumerated types (Enums).

class-enum-declaration:
[ class-member-visibility-modifier ] enum enum-name { [ enum-members ] }

10.13. Class enums 63



Vala Reference Manual, Release 0.57.0.298-a8cae1

10.14 Class delegates

Delegates defined in a class are basically the same as those defined in a namespace. The only difference is the scope
and the choice of visibilities available. See Delegates.

class-delegate-declaration:
[ class-member-visibility-modifier ] return-type delegate delegate-name ( method-params-list ) ;

10.15 Examples

Demonstrating. . .

1 // ...

10.15.1 Using Properties

For more examples see: Samples for Class Properties

Virtual Properties

1 namespace Properties {
2 class Base : Object {
3 protected int _number;
4 public virtual int number {
5 get {
6 return this._number;
7 }
8 set {
9 this._number = value;

10 }
11 }
12 }
13

14 /**
15 * This class just use Base class default handle
16 * of number property.
17 */
18 class Subclass : Base {
19 public string name { get; set; }
20 }
21

22 /**
23 * This class override how number is handle internally.
24 */
25 class ClassOverride : Base {
26 public override int number {
27 get {
28 return this._number;
29 }

(continues on next page)

64 Chapter 10. Classes

https://live.gnome.org/Vala/PropertiesSample


Vala Reference Manual, Release 0.57.0.298-a8cae1

(continued from previous page)

30 set {
31 this._number = value * 3;
32 }
33 }
34 }
35

36 void main () {
37 stdout.printf ("Implementing Virtual Properties...\n");
38 var bc = new Base ();
39 bc.number = 3;
40 stdout.printf ("Class number = '" + bc.number.to_string () + "'\n");
41 var sc = new Subclass ();
42 sc.number = 3;
43 stdout.printf ("Class number = '" + sc.number.to_string () + "'\n");
44 var co = new ClassOverride ();
45 co.number = 3;
46 stdout.printf ("Class number = '" + co.number.to_string () + "'\n");
47 }
48 }

Abstract Properties

1 namespace Properties {
2 abstract class Base : Object {
3 public abstract string name { get; set construct; }
4

5 construct {
6 this.name = "NO_NAME";
7 }
8 }
9

10 class Subclass : Base {
11 private string _name;
12

13 public override string name {
14 get {
15 return this._name;
16 }
17 set construct {
18 this._name = value;
19 }
20 }
21

22 /* This class have a default constructor that initializes
23 * name as the construct block on Base, and a .with_name()
24 * constructor where the user can set class derived name
25 * property.
26 */
27 public Subclass.with_name (string name) {
28 Object (name:name);

(continues on next page)

10.15. Examples 65



Vala Reference Manual, Release 0.57.0.298-a8cae1

(continued from previous page)

29 this._name = name;
30 }
31 }
32

33 void main () {
34 stdout.printf ("Implementing Abstract Properties...\n");
35 var sc = new Subclass.with_name ("TEST_CLASS");
36 stdout.printf ("Class name = '" + sc.name + "'\n");
37 var sc2 = new Subclass ();
38 stdout.printf ("Class name = '" + sc2.name + "'\n");
39 }
40 }

Compile and run using:

$ valac source.vala
$ ./source

10.15.2 Using signals

1 public class Test : Object {
2 public signal void test (int data);
3 }
4

5 delegate void TestHandler (Test t, int data);
6

7 void main () {
8 Test t = new Test ();
9

10 TestHandler h = (t, data) => {
11 stdout.printf ("Data: %d\n", data);
12 };
13

14 t.test (1);
15 t.test.connect (h);
16 t.test (2);
17 t.test.disconnect (h);
18 t.test (3);
19 }

66 Chapter 10. Classes



CHAPTER

ELEVEN

INTERFACES

An interface in Vala is a non-instantiable type. A class may implement any number of interfaces, thereby declaring
that an instance of that class should also be considered an instance of those interfaces. Interfaces are part of the GType
system, and so compact classes may not implement interfaces (see Types of class.)

The simplest interface declaration looks like this:

1 interface InterfaceName {
2 }

Unlike C# or Java, Vala’s interfaces may include implemented methods, and so provide premade functionality to an
implementing class, similar to mixins in other languages. All methods defined in a Vala interface are automatically
considered to be virtual. Interfaces in Vala may also have prerequisites - classes or other interfaces that implementing
classes must inherit from or implement. This is a more general form of the interface inheritance found in other lan-
guages. It should be noted that if you want to guarantee that all implementors of an interface are GObject type classes,
you should give that class as a prerequisite for the interface.

Interfaces in Vala have a static scope, identified by the name of the interface. This is the only scope associated with
them (i.e. there is no class or instance scope created for them at any time.) Non-instance members of the interface
(static members and other declarations,) can be identified using this scope.

For an overview of object oriented programming, see Object oriented programming.

11.1 Interface declaration

interface-declaration:
[ access-modifier ] interface qualified-interface-name [ inheritance-list ] { [ interface-members ] }

qualified-interface-name:
[ qualified-namespace-name . ] interface-name

interface-name:
identifier

inheritance-list:
: prerequisite-classes-and-interfaces

prerequisite-classes-and-interfaces:
qualified-class-name [ , prerequisite-classes-and-interfaces ]
qualified-interface-name [ , prerequisite-classes-and-interfaces ]

67



Vala Reference Manual, Release 0.57.0.298-a8cae1

interface-members:
interface-member [ interface-members ]

interface-member:
interface-constant-declaration
interface-delegate-declaration
interface-enum-declaration
interface-instance-member
interface-static-member
interface-inner-class-declaration
abstract-method-declaration

interface-instance-member:
interface-instance-method-declaration
interface-instance-abstract-method-declaration
interface-instance-property-declaration
interface-instance-signal-declaration

interface-static-member:
interface-static-field-declaration
interface-static-method-declaration

11.2 Interface fields

As an interface is not instantiable, it may not contain data on a per instance basis. It is though allowable to define static
fields in an interface. These are equivalent to static fields in a class: they exist exactly once regardless of how many
instances there are of classes that implement the interface.

The syntax for static interface fields is the same as the static class fields: See Class fields. For more explanation of
static vs instance members, see Types of class members.

11.3 Interface methods

Interfaces can contain abstract and non abstract methods. A non-abstract class that implements the interface must
provide implementations of all abstract methods in the interface. All methods defined in an interface are automatically
virtual.

Vala interfaces may also define static methods. These are equivalent to static methods in classes.

interface-instance-method-declaration:
[ class-member-visibility-modifier ] return-type method-name ( [ params-list ] ) method-contracts [
throws exception-list ] { statement-list }

interface-instance-abstract-method-declaration:
[ class-member-visibility-modifier ] abstract return-type method-name ( [ params-list ] )
method-contracts [ throws exception-list ] ;

68 Chapter 11. Interfaces



Vala Reference Manual, Release 0.57.0.298-a8cae1

interface-static-method-declaration:
[ class-member-visibility-modifier ] static return-type method-name ( [ params-list ] )
method-contracts [ throws exception-list ] { statement-list }

For discussion of methods in classes, see: Class methods. For information about methods in general, see Methods. Of
particular note is that an abstract method of an interface defines a method that can always be called in an instance of
an interface, because that instance is guaranteed to be of a non-abstract class that implements the interface’s abstract
methods.

11.4 Interface properties

Interfaces can contain properties in a similar way to classes. As interfaces can not contain per instance data, inter-
face properties cannot be created automatically. This means that all properties must either be declared abstract (and
implemented by implementing classes,) or have explicit get and set clauses as appropriate. Vala does not allow an
abstract property to be partially implemented, instead it should just define which actions (get, set or both) should be
implemented.

Interfaces are not constructed so there is no concept of an interface construction property.

interface-instance-property-declaration:
[ class-member-visibility-modifier ] [ class-method-type-modifier ] qualified-type-name
property-name { accessors [ default-value ] } ;
[ class-member-visibility-modifier ] abstract qualified-type-name property-name {
automatic-accessors } ;

For properties in classes see Properties.

11.5 Interface signals

Signals can be defined in interfaces. They have exactly the same semantics as when directly defined in the implementing
class.

interface-instance-signal-declaration:
class-instance-signal-declaration

11.6 Other interface members

Constants, Enums, Delegates and Inner Classes all function the same as when they are declared in a class. See Classes.
When declared in an interface, all these members can be accessed either using the name of the interface (that is, of the
static interface scope), or through and instance of an implementing class.

11.4. Interface properties 69



Vala Reference Manual, Release 0.57.0.298-a8cae1

11.7 Examples

Here is an example implementing (and overriding) an abstract interface method,

1 /*
2 This example gives you a simple interface, Speaker, with
3 - one abstract method, speak
4

5 It shows you three classes to demonstrate how these and overriding them behaves:
6 - Fox, implementing Speaker
7 - ArcticFox, extending Fox AND implementing Speaker
8 (ArcticFox.speak () replaces superclasses' .speak ())
9 - RedFox, extending Fox BUT NOT implementing speaker

10 (RedFox.speak () does not replace superclasses' .speak ())
11

12 Important notes:
13 - generally an object uses the most specific class's implementation
14 - ArcticFox extends Fox (which implements Speaker) and implements Speaker itself,
15 - ArcticFox defines speak () with new, so even casting to Fox or Speaker still
16 gives you ArcticFox.speak ()
17 - RedFox extends from Fox, but DOES NOT implement Speaker
18 - RedFox speak () gives you RedFox.speak ()
19 - casting RedFox to Speaker or Fox gives you Fox.speak ()
20 */
21

22 /* Speaker: extends from GObject */
23 interface Speaker : Object {
24 /* speak: abstract without a body */
25 public abstract void speak ();
26 }
27

28 /* Fox: implements Speaker, implements speak () */
29 class Fox : Object, Speaker {
30 public void speak () {
31 stdout.printf (" Fox says Ow-wow-wow-wow\n");
32 }
33 }
34

35 /* ArcticFox: extends Fox; must also implement Speaker to re-define
36 * inherited methods and use them as Speaker */
37 class ArcticFox : Fox, Speaker {
38 /* speak: uses 'new' to replace speak () from Fox */
39 public new void speak () {
40 stdout.printf (" ArcticFox says Hatee-hatee-hatee-ho!\n");
41 }
42 }
43

44 /* RedFox: extends Fox, does not implement Speaker */
45 class RedFox : Fox {
46 public new void speak () {
47 stdout.printf (" RedFox says Wa-pa-pa-pa-pa-pa-pow!\n");
48 }
49 }

(continues on next page)

70 Chapter 11. Interfaces



Vala Reference Manual, Release 0.57.0.298-a8cae1

(continued from previous page)

50

51 void main () {
52 Speaker f = new Fox ();
53 Speaker a = new ArcticFox ();
54 Speaker r = new RedFox ();
55

56 stdout.printf ("\n\n// Fox implements Speaker, speak ()\n");
57 stdout.printf ("Fox as Speaker:\n");
58 (f as Speaker).speak (); /* Fox.speak () */
59 stdout.printf ("\nFox as Fox:\n");
60 (f as Fox).speak (); /* Fox.speak () */
61

62 stdout.printf ("\n\n// ArcticFox extends Fox, re-implements Speaker and " +
63 "replaces speak ()\n");
64 stdout.printf ("ArcticFox as Speaker:\n");
65 (a as Speaker).speak (); /* ArcticFox.speak () */
66 stdout.printf ("ArcticFox as Fox:\n");
67 (a as Fox).speak (); /* ArcticFox.speak () */
68 stdout.printf ("\nArcticFox as ArcticFox:\n");
69 (a as ArcticFox).speak (); /* ArcticFox.speak () */
70

71 stdout.printf ("\n\n// RedFox extends Fox, DOES NOT re-implement Speaker but" +
72 " does replace speak () for itself\n");
73 stdout.printf ("RedFox as Speaker:\n");
74 (r as Speaker).speak (); /* Fox.speak () */
75 stdout.printf ("\nRedFox as Fox:\n");
76 (r as Fox).speak (); /* Fox.speak () */
77 stdout.printf ("\nRedFox as RedFox:\n,");
78 (r as RedFox).speak (); /* RedFox.speak () */
79 }

Here is an example of implementing (and inheriting) a virtual interface method. Note that the same rules for subclasses
re-implementing methods that apply to the abstract interface method above apply here.

1 /*
2 This example gives you a simple interface, Yelper, with
3 - one virtual default method, yelp
4

5 It shows you two classes to demonstrate how these and overriding them behaves:
6 - Cat, implementing Yelper (inheriting yelp)
7 - Fox, implementing Yelper (overriding yelp)
8

9 Important notes:
10 - generally an object uses the most specific class's implementation
11 - Yelper provides a default yelp (), but Fox overrides it
12 - Fox overriding yelp () means that even casting Fox to Yelper still gives
13 you Fox.yelp ()
14 - as with the Speaker/speak () example, if a subclass wants to override an
15 implementation (e.g. Fox.yelp ()) of a virtual interface method
16 (e.g. Yelper.yelp ()), it must use 'new'
17 - 'override' is used when overriding regular class virtual methods,
18 but not when implementing interface virtual methods.

(continues on next page)

11.7. Examples 71



Vala Reference Manual, Release 0.57.0.298-a8cae1

(continued from previous page)

19 */
20

21 interface Yelper : Object {
22 /* yelp: virtual, if we want to be able to override it */
23 public virtual void yelp () {
24 stdout.printf (" Yelper yelps Yelp!\n");
25 }
26 }
27

28 /* Cat: implements Yelper, inherits virtual yelp () */
29 class Cat : Object, Yelper {
30 }
31

32 /* Fox: implements Yelper, overrides virtual yelp () */
33 class Fox : Object, Yelper {
34 public void yelp () {
35 stdout.printf (" Fox yelps Ring-ding-ding-ding-dingeringeding!\n");
36 }
37 }
38

39 void main () {
40 Yelper f = new Fox ();
41 Yelper c = new Cat ();
42

43 stdout.printf ("// Cat implements Yelper, inherits yelp\n");
44 stdout.printf ("Cat as Yelper:\n");
45 (c as Yelper).yelp (); /* Yelper.yelp () */
46 stdout.printf ("\nCat as Cat:\n");
47 (c as Cat).yelp (); /* Yelper.yelp () */
48

49 stdout.printf ("\n\n// Fox implements Yelper, overrides yelp ()\n");
50 stdout.printf ("Fox as Yelper:\n");
51 (f as Yelper).yelp (); /* Fox.yelp () */
52 stdout.printf ("\nFox as Fox:\n");
53 (f as Fox).yelp (); /* Fox.yelp () */
54 }

72 Chapter 11. Interfaces



CHAPTER

TWELVE

GENERICS

Generic programming is a way of defining that something is applicable to a variety of potential types, without having
to know these types before hand. The classic example would be a collection such as a list, which can be trivially
customised to contain any type of data elements. Generics allow a Vala programmer to have these customisations done
automatically.

Some of these are possible, which?

• class Wrapper<T> : Object { . . . }

• new Wrapper<Object> ();

• BUG: class StringWrapper : Wrapper<string> () { . . . }

• FAIL: class WrapperWrapper<Wrapper<T>> : Object { . . . }

• FAIL: new WrapperWrapper<Wrapper<Object>> () ;

• interface IWrapper<T> { . . . }

• class ImpWrapper1<T> : Object, IWrapper<T> { . . . }

• BUG: class ImpWrapper2 : Object, IWrapper<string> { . . . }

12.1 Generics declaration

Some of the syntax could be best placed in the class/interface/struct pages, but that might overcomplicate them. . .

In class declaration - In struct declaration - In interface declaration - In base class declaration - In implemented interfaces
declaration - In prerequesite class/interface declaration.

Declaration with type parameters introduces new types into that scope, identified by names given in declaration, e.g.
T.

qualified-type-name-with-generic:
qualified-class-name-with-generic
qualified-interface-name-with-generic
qualified-struct-name-with-generic

qualified-class-name-with-generic:
[ qualified-namespace-name . ] class-name type-parameters

qualified-interface-name-with-generic:
[ qualified-namespace-name . ] interface-name type-parameters

73



Vala Reference Manual, Release 0.57.0.298-a8cae1

qualified-struct-name-with-generic:
[ qualified-namespace-name . ] struct-name type-parameters

type-parameters:
< generic-clause >

generic-clause:
type-identifier [ , generic-clause ]
qualified-type-name [ , generic-clause ]

type-identifier:
identifier

type-identifier will be the type-name for the parameterised type.

Deal is: in the class/interface/struct sections, replace qualified--name with qualified--name-with-generic.

12.2 Instantiation

Only explanation here? Syntax should go with variable declaration statement?

When using generic for a type-name, only type-names can be used as type-parameters, not identifiers. NB. in scope of
generic class, T etc. is a real type-name.

12.3 Examples

Demonstrating. . .

1 public interface With<T> {
2 public abstract void sett (T t);
3 public abstract T gett ();
4 }
5

6 public class One : Object, With<int> {
7 public int t;
8

9 public void sett (int t) {
10 this.t = t;
11 }
12 public int gett () {
13 return t;
14 }
15 }
16

17 public class Two<T,U> : Object, With<T> {
18 public T t;
19

20 public void sett (T t) {
21 this.t = t;
22 }

(continues on next page)

74 Chapter 12. Generics



Vala Reference Manual, Release 0.57.0.298-a8cae1

(continued from previous page)

23 public T gett () {
24 return t;
25 }
26

27 public U u;
28 }
29

30 void main () {
31 var o = new One ();
32 o.sett (5);
33 stdout.printf ("%d\n", o.t);
34

35 var t = new Two<int,double?> ();
36 t.sett (5);
37 stdout.printf ("%d\n", t.t);
38

39 t.u = 5.0f;
40 stdout.printf ("%f\n", t.u);
41 }

12.3. Examples 75



Vala Reference Manual, Release 0.57.0.298-a8cae1

76 Chapter 12. Generics



CHAPTER

THIRTEEN

STRUCTS

A struct is a data type that can contain fields, constants, and methods.

The simplest struct declaration looks like this:

1 struct StructName {
2 int some_field;
3 }

A struct must have at least one field, except in either one of the following cases:

• It’s external

• It has either one of [BooleanType], [IntegerType] or [FloatingType] attributes

• It inherits from another struct

13.1 Struct declaration

struct-declaration:
[ access-modifier ] struct qualified-struct-name [ : super-struct ] { [ struct-members ] }

qualified-struct-name:
[ qualified-namespace-name . ] struct-name

struct-name:
identifier

struct-members:
struct-member [ struct-members ]

struct-member:
struct-creation-method-declaration:
struct-field-declaration
struct-constant-declaration
struct-method-declaration

If a super-struct is given, the struct-name becomes an alias for that struct.

77



Vala Reference Manual, Release 0.57.0.298-a8cae1

13.2 Controlling instantiation

struct-creation-method-declaration:
[ struct-access-modifier ] struct-name [ . creation-method-name ] ( param-list ) { statement-list }

struct-name:
identifier

Unlike in a class, any code can go in this method.

13.3 Struct fields

Documentation

struct-field-declaration:
[ access-modifier ] [struct-field-type-modifier] qualified-type-name field-name [ = expression ] ;

struct-field-type-modifier:
static

13.4 Struct constants

class-constant-declaration:
[ class-access-modifier ] const qualified-type-name constant-name = expression ;

13.5 Struct methods

See Methods, See Class methods

struct-method-declaration:
[ access-modifier ] [ struct-method-type-modifier ] return-type method-name ( [ params-list ] )
method-contracts [ throws exception-list ] { statement-list }

struct-method-type-modifier:
static

13.6 Examples

Demonstrating. . .

1 // ...

78 Chapter 13. Structs



CHAPTER

FOURTEEN

ENUMERATED TYPES (ENUMS)

Enumerated types declare all possible values that instances of the type may take. They may also define methods of
the type, but an enumerated type has no data other than its value. Enumerated types are value types, and so each
instantiation of the type is unique, even when they represent the same value. This distinction is not significant in
practice because when instances are compared, it is always by value not identity.

Enumerated types are usually known as simply “enums”.

14.1 Enum declaration

enum-declaration:
[ access-modifier ] enum qualified-enum-name { [ enum-members ] }

qualified-enum-name:
[ qualified-namespace-name . ] enum-name

enum-name:
identifier

enum-members:
[ enum-values ] [ ; enum-methods ]

enum-values:
enum-value [ , enum-values ]

enum-value:
enum-value-name [ = expression ]

enum-value-name:
identifier

enum-methods:
enum-method [ enum-methods ]

enum-method:
method-declaration

79



Vala Reference Manual, Release 0.57.0.298-a8cae1

14.2 Enum members

Equivalent to constants, all have an integer value, either explicit or automatically assigned.

14.3 Methods

Are similar to static methods of classes, i.e. are not related to any particular instance, but can be invoked on either an
instance or the enum itself.

14.4 Flag types

An enumerated type declaration can be converted into a flag type declaration by annotating the declaration with “Flags”.
A flag type represents a set of flags, any number of which can be combined in one instance of the flag type, in the same
fashion as a bitfield in C. For an explanation of the operations that can be performed on flag types, see Flag operations.
For how to use attributes, see Attributes.

For example, say we want to draw the borders of a table cell:

1 [Flags]
2 enum Borders {
3 LEFT,
4 RIGHT,
5 TOP,
6 BOTTOM
7 }
8

9 void draw_borders (Borders selected_borders) {
10 // equivalent to: if ((Borders.LEFT & selected_borders) > 0)
11 if (Borders.LEFT in selected_borders) {
12 // draw left border
13 }
14 if (Borders.RIGHT in selected_borders) {
15 // draw right border
16 }
17 ...
18 }

14.5 Error domains

Error domains are Vala’s method for describing errors. An error domain is declared using a similar syntax to enumerated
types, but this does not define a type - instead it defines a class of errors, which is used to implicitly create a new error
type for the error domain. The error domain declaration syntax is effectively the same as for enumerated types, but the
keyword errordomain is used instead of enum.

For more information about handling errors in Vala, see Errors.

80 Chapter 14. Enumerated types (Enums)



Vala Reference Manual, Release 0.57.0.298-a8cae1

14.6 Examples

Demonstrating. . .

1 // ...

14.6. Examples 81



Vala Reference Manual, Release 0.57.0.298-a8cae1

82 Chapter 14. Enumerated types (Enums)



CHAPTER

FIFTEEN

ATTRIBUTES

Attributes are metadata information that is specified with regards to a symbol (a class, field, parameter, etc.).

Attributes provide extra information in order to:

• Integrate libraries more directly. These are the ones most often used in new Vala programs/libraries.

• Control C code generation, particularly with existing libraries. Mostly used in bindings.

• Give extra information to Vala that isn’t included in code. Mostly used internally in Vala.

Most of these attributes are only useful within bindings. Some, however, are useful in normal code:

• [DBus], [Description], [Version], [Signal], [ModuleInit] (if you’re writing a module).

• CCode’s instance_pos (if you’re using Gtk.Builder’s signal auto-connection functionality).

15.1 Applying attributes

They are written as:

1 [AnnotationName (details-list)]
2 declaration

For example:

1 [CCode (cname = "var_c_name")]
2 static int my_var;

15.2 CCode attribute

This attribute influences the C code which is generated by Vala.

Name Applies to Type
Description (optional) Example (optional)
array_length delegate, field, property,

method, parameter
bool

If the array length is unknown, setting array_length =
false in the CCode attribute will cause Vala to set the ar-
ray’s .length property to -1 and not pass the length when
used as a parameter.

continues on next page

83



Vala Reference Manual, Release 0.57.0.298-a8cae1

Table 1 – continued from previous page
Name Applies to Type
Description (optional) Example (optional)
array_length_cname field string
array_length_cexpr field string
array_length_pos constructor, delegate,

method, parameter
double

The position of the argument which should be the length
of the return array. Integers (such as 1.0, 2.0) specify
arguments, so to place it before or after these arguments,
use a value less (i.e. 0.9) or more (i.e. 1.1) than the
argument.

0.9

array_length_type field, method string
array_null_terminated constructor method, del-

egate, field, parameter,
property

bool

cheader_filename class, constant, construc-
tor, delegate, enum, field,
interface, method, names-
pace, struct

string (comma-separated
list of headers)

The header file(s) which should be #included in the emit-
ted C code, so that this symbol is usable. If more than
one header file is needed, separate them by commas.

“glib.h”

cname class, constant, construc-
tor, delegate, enum, field,
method, struct, propacc

string

The name that this symbol will take when translated into
C code. If this attribute is not specified, the symbol will
get a name with the normal vala translation rules.

“gboolean”

const_cname class, struct string
construct_function constructor string
copy_function class string
cprefix class, enum, namespace,

struct
string

default_value struct string - C value expression
A C expression representing this type’s default value. “FALSE”
delegate_target field bool
delegate_target_pos constructor, delegate,

method, parameter
double

0.1
delegate_target_cname delegate, field/parameter string
A C expression representing the name of the tar-
get/userdata related to a delegate field/parameter.

“userdata”

destroy_function struct string
destroy_notify_pos parameter`` double
free_function class string
free_function_address_of class bool
generic_type_pos method double
get_value_function class, struct string (C function name)
A function which will return an object when passed a
GValue.

“g_value_get_boolean”

gir_namespace namespace string
continues on next page

84 Chapter 15. Attributes



Vala Reference Manual, Release 0.57.0.298-a8cae1

Table 1 – continued from previous page
Name Applies to Type
Description (optional) Example (optional)
gir_version namespace string
has_construct_function method bool
has_copy_function struct bool
has_destroy_function struct bool
has_new_function method bool
has_target delegate bool
has_type_id class, struct, enum bool
This is used to specify whether a corresponding GType
must exists.

true

instance_pos constructor, delegate,
method

double

The argument position of the instance that will be used
as this in methods.
lower_case_cprefix namespace string
lower_case_csuffix class, enum, errordomain,

interface
string

marshaller_type_name class, struct string
“BOOLEAN”

notify property bool
ordering virtual

method/property/signal
int

Specify the position of the vfunc in the vtable. Once
one ordering has been specified in a class, it must be
specified for all of the vfuncs.
param_spec_function class string
pos parameter double
ref_function class string
ref_function_void class bool
Whether the ref function returns void. Default is false.
ref_sink_function class string
ref_sink_function_void class bool
Whether the ref_sink function returns void. Default is
false.
returns_floating_reference method bool
Whether the method returns a floating reference to an
object.
sentinel constructor, method string
Sentinel value to use as the last of variadic arguments.
scope delegate, parameter string
Scope of the delegate as in GIR notation. “async”
set_value_function class, struct string (C function name)
A function that will set a GValue with an object of this
type.

“g_value_set_boolean”

simple_generics method bool
take_value_function class string
type class, interface, field, pa-

rameter, method
string

type_check_function class string
type_cname interface string

continues on next page

15.2. CCode attribute 85



Vala Reference Manual, Release 0.57.0.298-a8cae1

Table 1 – continued from previous page
Name Applies to Type
Description (optional) Example (optional)
type_id class, enum, struct string
The GObject type system type that this object is regis-
tered with. If type_id is not specified, Vala uses a type
ID based on the type’s name.

“G_TYPE_BOOLEAN”

type_signature class, interface, struct string
unref_function class string
vfunc_name constructor, method string

15.3 Version attribute

Used to annotate symbols with versioning information.

Available since Vala 0.31.1.

Name Type Description
since string Version number - if used will be checked against locally

installed package version.
deprecated bool Was [Deprecated]
deprecated_since string Version number
replacement string Symbol name
experimental bool Was [Experimental]
experimental_until string Version number

15.4 SimpleType attribute

This attribute is applied to structs. Consider reading: Value types.

15.5 BooleanType attribute

This attribute is applied to structs, combined with SimpleType. Marks the struct as being a boolean type.

15.6 IntegerType attribute

This attribute is applied to structs, combined with SimpleType. Marks the struct as being an integer number type.

Name Type
min integer
max integer
rank integer
width integer
signed bool

86 Chapter 15. Attributes



Vala Reference Manual, Release 0.57.0.298-a8cae1

15.7 FloatingType attribute

This attribute is applied to structs, combined with SimpleType. Marks the struct as being a floating point number type.

Name Type
decimal bool
rank integer
width integer

15.8 Signal attribute

This attribute influences the generation and usage of object signals, mostly for the GObject type system. The default is
G_SIGNAL_RUN_LAST.

Name Type
Description (optional)
detailed bool
Sets the G_SIGNAL_DETAILED flag.
no_recurse bool
Sets the G_SIGNAL_NO_RECURSE flag.
run string
Significant values are “first”, “last” or “cleanup”. Default is “last”.
action bool
Sets the G_SIGNAL_ACTION flag.
no_hooks bool
Sets the G_SIGNAL_NO_HOOKS flag.

15.9 Description attribute

This attribute influences the generation and usage of object properties, mostly for the GObject type system.

Name Type
nick string
blurb string

15.10 DBus attribute

This attribute influences the generation of DBus interfaces (for servers) or DBus calls (for clients) which are generated
by Vala.

15.7. FloatingType attribute 87



Vala Reference Manual, Release 0.57.0.298-a8cae1

Name Applies to Type
Description (optional)
name class, interface, method,

property, signal
string

Usually some reverse domain name notation is used, e.g.
“org.my.interface” or “MyMember”
signature string
This makes it possible to use GVariant in D-Bus clients
and servers without automatic boxing/unboxing.
use_string_marshalling enum bool
Marshalling enum values as strings
value enumvalue string
Marshalling enum values as strings
use_string_marshalling enum bool
timeout (client only) method, property integer
Timeout is specified in milliseconds
no_reply method
Do not expect a reply from the server
result (server only) method string
visible (server only) method, property, signal bool
By setting visible = false you can specify that the
member should not be exported via D-Bus

15.11 Gtk attributes

15.11.1 GtkTemplate attribute

Can only be applied to classes that inherit from Gtk.Widget. The ui argument is mandatory.

Name Type Example
Description (optional)
ui (mandatory) string “/org/gnome/yourapp/main.ui”
Specifies the .ui gresource to be used for building the
Gtk widget

15.11.2 GtkChild attribute

Can only be applied to fields of classes being marked with [GtkTemplate]. It’s used to connect a field with a child
object in the Gtk builder definition.

Name Type Example
Description (optional)
name string
Custom name being used in the Gtk builder ui definition.
By default the name of the marked field is used.
internal bool
Whether this child is internal or not in the Gtk builder ui
definition.

88 Chapter 15. Attributes



Vala Reference Manual, Release 0.57.0.298-a8cae1

15.11.3 GtkCallback attribute

Can only be applied to methods of classes being marked with [GtkTemplate]. It’s used to connect to a signal defined
in the Gtk builder ui with the marked method.

Name Type Example
Description (optional)
name string “on_button_clicked”
Custom name being used in the Gtk builder ui definition.
By default the name of the marked method is used.

15.12 Other attributes

Name Applies to Description
Assert method
Compact class
ConcreteAccessor abstract property Use get/set functions, but do not override them as they

are not abstract.
DestroysInstance method
Diagnostics method
ErrorBase class Only use by GLib.Error at the moment
Flags enum Marks the enum values to be flags
FormatArg parameter specifies that the method takes and returns a printf or

scanf format string
HasEmitter signal
Immutable class, struct
ModuleInit method Marks the associated type as dynamic, and marks the

method as a TypeModule init function. See TypeModule
example

NoAccessorMethod property
NoReturn method Once the method is called, it will never return
NoThrow method Marks methods that can never throw exceptions. Dova

profile only
NoWrapper method
PointerType
Print method Stringifies and concatenates all arguments you pass to

the method
PrintfFormat method See also ScanfFormat attribute
ReturnsModifiedPointermethod
ScanfFormat method See also PrintFormat attribute
SingleInstance class Makes the class a thread-safe singleton

15.12. Other attributes 89

https://valadoc.org/gobject-2.0/GLib.TypeModule
https://wiki.gnome.org/Projects/Vala/TypeModuleSample
https://wiki.gnome.org/Projects/Vala/TypeModuleSample


Vala Reference Manual, Release 0.57.0.298-a8cae1

15.13 Deprecated attributes

Attributes that have been deprecated and should no longer be used in new code.

Name Since Use instead
Deprecated 0.31.1 [Version (deprecated = true,

deprecated_since = "", replacement = "")]
Experimental 0.31.1 [Version (experimental = true,

experimental_until = "")]
NoArrayLength 0.7.10 [CCode (array_length = false)]

15.14 Examples

TODO: write examples.

90 Chapter 15. Attributes



CHAPTER

SIXTEEN

PREPROCESSOR

The Vala preprocessor is a particular part of Vala that acts at syntax level only, allowing you to conditionally write pieces
of your software depending upon certain compile-time conditions. Preprocessor directives will never be generated in
the resulting code.

16.1 Directives syntax

All preprocessor directives start with a hash (#), except for the first line of a file starting with #! (used for Vala scripts).

vala-code:
[ any vala code ] [ pp-condition ] [ any vala code ]

pp-condition:
#if pp-expression vala-code [ pp-elif ] [ pp-else ] #endif

pp-elif:
#elif pp-expression vala-code [ pp-elif ]

pp-else:
#else vala-code

pp-expression:
pp-or-expression

pp-or-expression:
pp-and-expression [ || pp-and-expression ]

pp-and-expression:
pp-binary-expression [ && pp-binary-expression ]

pp-binary-expression:
pp-equality-expression
pp-inequality-expression

pp-equality-expression:
pp-unary-expression [ == pp-unary-expression ]

91



Vala Reference Manual, Release 0.57.0.298-a8cae1

pp-inequality-expression:
pp-unary-expression [ != pp-unary-expression ]

pp-unary-expression:
pp-negation-expression
pp-primary-expression

pp-negation-expression:
! pp-unary-expression

pp-primary-expression:
pp-symbol
( pp-expression )
true
false

pp-symbol:
identifier

The semantics of the preprocessor are very simple: if the condition is true then the Vala code surrounded by the
preprocessor will be parsed, otherwise it will be ignored. A symbol evaluates to true if it is defined at compile-time.
If a symbol in a preprocessor directive is not defined, it evaluates to false.

16.2 Defining symbols

It’s not possible to define a preprocessor symbol inside the Vala code (like with C). The only way to define a symbol is
to feed it through the valac option -D.

16.3 Built-in defines

Name Description
POSIX Set if the profile is posix
GOBJECT Set if the profile is gobject
VALA_X_Y Set if Vala API version is equal or higher to version X.Y

16.4 Examples

How to conditionally compile code based on a valac option -D.

Sample code:

vala-test:examples/advanced.vala

1 // Vala preprocessor example
2 public class Preprocessor : Object {
3

(continues on next page)

92 Chapter 16. Preprocessor



Vala Reference Manual, Release 0.57.0.298-a8cae1

(continued from previous page)

4 /* public instance method */
5 public void run () {
6 #if PREPROCESSOR_DEBUG
7 // Use "-D PREPROCESSOR_DEBUG" to run this code path
8 stdout.printf ("debug version");
9 #else

10 // Normally, we run this code path
11 stdout.printf ("production version");
12 #endif
13 }
14 }
15

16 /* application entry point */
17 void main () {
18 var sample = new Preprocessor ();
19 sample.run ();
20 }

16.4.1 Compile and Run

Normal build/run:

$ valac -o preprocessor Preprocessor.vala
$ ./preprocessor

Debug build/run:

$ valac -D PREPROCESSOR_DEBUG -o preprocessor-debug Preprocessor.vala
$ ./preprocessor-debug

16.4. Examples 93



Vala Reference Manual, Release 0.57.0.298-a8cae1

94 Chapter 16. Preprocessor



CHAPTER

SEVENTEEN

GIR METADATA FORMAT

The GIR format actually has a lot of information for generating bindings, but it’s a different language than Vala. There-
fore, it’s almost impossible to directly map a whole .gir file into a Vala tree, hence the need of metadata. On the other
side we might want to use directly .gir + .metadata instead of generating a .vapi, but .vapi is more humanly readable
and faster to parse than the GIR, hence the need of vapigen for generating a .vapi.

17.1 Locating metadata

The filename of a metadata for a SomeLib.girmust be SomeLib.metadata. By default Vala looks for .metadata into
the same directory of the .gir file, however it’s possible to specify other directories using the --metadatadir option.

17.2 Comments

Comments in the metadata have the same syntax as in Vala code:

1 // this is a comment
2 /*
3 * multi-line comment
4 */

17.3 Syntax

Metadata information for each symbol must provided on different lines:

rule:
pattern [ arguments ] [ newline relative-rules ] newline

relative-rules:
. pattern [ arguments ] [ newline relative-rules ]

pattern:
glob-style-pattern [ # selector ] [ . pattern ]

arguments:
identifier [ = expression ] [ arguments ]

95



Vala Reference Manual, Release 0.57.0.298-a8cae1

expression:
null
true
false
- expression
integer-literal
real-literal
string-literal
symbol

symbol:
identifier [ . identifier ]

• Patterns are tied to the GIR tree: if a class FooBar contains a method baz_method then it can be referenced in
the metadata as FooBar.baz_method.

• Selectors are used to specify a particular element name of the GIR tree, for example FooBar.
baz_method#method will only select method elements whose name is baz_method. Useful to solve name
collisions.

• Given a namespace named Foo a special pattern Foo is available for setting general arguments.

• If a GIR symbol matches multiple rules then all of them will be applied: if there are clashes among arguments,
last written rules in the file take precedence.

• If the expression for an argument is not provided, it’s treated as true by default.

• A relative rule is relative to the nearest preceding absolute rule. Metadata must contain at least one absolute
rule. It’s not possible to make a rule relative to another relative rule.

17.4 Valid arguments

Name Applies To Type Description
skip all bool Skip processing the symbol
hidden all bool Process the symbol but hide from output
type method, parameter, property, field, constant, alias string Complete Vala type
type_arguments method, parameter, property, field, constant, alias string Vala type parameters for generics, separated by commas
cheader_filename all including namespace string C headers separated by commas
name all including namespace string Vala symbol name
owned parameter bool Whether the parameter value should be owned
unowned method, property, field, constant bool Whether the symbol is unowned
parent all string Move the symbol to the specified container symbol. If no container exists, a new namespace will be created.
nullable method, parameter, property, field, constant, alias bool Whether the type is nullable or not
deprecated all bool Whether the symbol is deprecated or not
replacement all string Deprecation replacement, implies deprecated=true
deprecated_since all string Deprecated since version, implies deprecated=true
array method, parameter, property, field, constant, alias bool Whether the type is an array or not
array_length_idx parameter int The index of the C array length parameter
default parameter any Default expression for the parameter
out parameter bool Whether the parameter direction is out or not
ref parameter bool Whether the parameter direction is ref or not

continues on next page

96 Chapter 17. GIR metadata format



Vala Reference Manual, Release 0.57.0.298-a8cae1

Table 1 – continued from previous page
Name Applies To Type Description
vfunc_name method string Name of the C virtual function
virtual method, signal, property bool Whether the symbol is virtual or not
abstract method, signal, property bool Whether the symbol is abstract or not
scope parameter (async method) string Scope of the delegate, in GIR terms
struct record (detected as boxed compact class) bool Whether the boxed type must be threaten as struct instead of compact class
printf_format method bool Add the [PrintfFormat] attribute to the method if true
array_length_field field (array) string The name of the length field
sentinel method string C expression of the last argument for varargs
closure parameter int Specifies the index of the parameter representing the user data for this callback
errordomain enumeration bool Whether the enumeration is an errordomain or not
destroys_instance method bool Whether the instance is owned by the method
throws method string Type of exception the method throws

17.5 Examples

Demonstrating. . .

17.5.1 Overriding Types

When you have the following expression:

typedef GList MyList;

where GList will hold integers, use type metadata as follows:

MyList type="GLib.List<int>"

The above metadata will generate the following code:

1 public class MyList : GLib.List<int> {
2 [CCode (has_construct_function = false)]
3 protected MyList ();
4 public static GLib.Type get_type ();
5 }

Then you can use GLib.List or NameSpace.MyList as if equal.

17.5.2 Skipping Simbols

MySimbol skip

17.5. Examples 97



Vala Reference Manual, Release 0.57.0.298-a8cae1

17.5.3 More Examples

98 Chapter 17. GIR metadata format



CHAPTER

EIGHTEEN

GIDL METADATA FORMAT

This section describes the format of .metadata files as used by vapigen as additional information for .vapi file generation.
Some of the information specified in the metadata can be used to set Attributes as well.

18.1 Comments

Comments start with a # and end at the end of a line. For example:

# this is a comment

18.2 Other Lines

Every non-comment line in the file is made of up two sections: the specifier, and the parameters.

The specifier is the first text to appear on the line, and it specifies what the rest of the line will be modifying.

The parameters are a space separated list of a parameter name, followed by an equals sign and the value enclosed in
quotes.

For example, this line sets parameter1 and parameter2 on foo.bar:

foo.bar parameter1="value" parameter2="value"

18.3 Specifiers

Specifiers always use the C name for whatever it is you are modifying. For example if your namespace is Foo, and the
Vala name for the type is Bar, then you would use FooBar.

Specifiers may also use wildcards, and all items that partially match the specifier will be selected. For example:

*.klass hidden="1"

will hide the klass field in all types.

99



Vala Reference Manual, Release 0.57.0.298-a8cae1

18.4 Specifying Different Things

To specify a:

Function name_of_function
Type Type
Property Type:property_name
Signal Type::signal_name
Field Type.field_name
Parameter (Function) name_of_function.param
Parameter (Delegate) DelegateName.param
Parameter (Signal) Type::signal_name.param

For example, hiding a symbol:

Type Foo hidden="1"
Function some_function hidden="1"
Field Foo.bar hidden="1"

18.5 Properties Reference

The format for the entries will be like so

Name Applies To Values Description
foobar Signal, Function, Class, Struct, etc The acceptable values The description goes here.

And in alphabetical order:

Name Applies To Values Description
abstract Class, Function 0, 1
accessor_method Property 0, 1
array_length_cname Field C identifier
array_length_pos Parameter (Function) Double (position between two Vala parameters) Sets the position of the length for the parameter, length needs to be hidden separately.
array_length_type Parameter (Function), Function (returning an array), Field C type
array_null_terminated Function (returning an array), Parameter (Function), Field 0, 1
async Function 0, 1 Force async function, even if it doesn’t end in _async
base_class Class C type Marks the base class for the type
base_type Struct Vala type Marks the struct as inheriting
cheader_filename Anything (except parameters) Header include path Compiler will add the specified header when thing is used.
common_prefix Enum String Removes a common prefix from enumeration values
const_cname Class (non-GObject) C type
copy_function Class (non-GObject) C function
cprefix Module String
ctype Parameter (Function), Field C type
default_value Parameter (Function) Any Vala value that would be valid for the type Sets the default value for a parameter.
delegate_target_pos Parameter (Function) Double (position between two Vala parameters)
deprecated Anything (except parameters) 0, 1 Marks the thing as deprecated
deprecated_since Anything (except parameters) Version Marks the thing as deprecated

continues on next page

100 Chapter 18. GIDL metadata format



Vala Reference Manual, Release 0.57.0.298-a8cae1

Table 1 – continued from previous page
Name Applies To Values Description
ellipsis Function 0, 1 Marks that the function has a variable argument list
errordomain Enum 0, 1 Marks the enumeration as a GError domain
finish_name Function C function name Sets custom asynchronous finish function
free_function Class (non-GObject) C function name Sets a free function for the struct
gir_namespace Module String
gir_version Module Version
has_copy_function Struct 0, 1 marks the struct as having a copy function
has_destroy_function Struct 0, 1
has_emitter Signal 0, 1
has_target Delegate 0, 1
has_type_id Class, Enum, Struct 0, 1 Marks whether a GType is registered for this thing
hidden Anything 0, 1 Causes the selected thing to not be output in the vapi file.
immutable Struct 0, 1 Marks the struct as immutable
instance_pos Delegate (Position between two Vala parameters) Double
is_array Function (returning an array), Parameter, Field 0, 1 Marks the thing as an array
is_fundamental Class (non-GObject) 0, 1
is_immutable Class (non-GObject) 0, 1
is_out Parameter 0, 1 Marks the parameter as “out”
is_ref Parameter 0, 1 Marks the parameter as “ref”
is_value_type Struct, Union 0, 1 Marks type as a value type (aka struct)
lower_case_cprefix Module String
lower_case_csuffix Interface String
name Any Type, Function, Signal Vala identifier Changes the name of the thing, does not change namespace
namespace Any Type String Changes the namespace of the thing
namespace_name Signal Parameter String Specify the namespace of the parameter type indicated with type_name
no_array_length Function (returning an array), Parameter (Function, Delegate) 0, 1 Does not implicitly pass/return array length to/from function
nullable Function (having a return value), Parameter 0, 1 Marks the value as nullable
owned_get Property 0, 1
parent Any module member String (Namespace) Strip namespace prefix from symbol and put it into given sub-namespace
printf_format Function 0, 1
rank Struct Integer
ref_function Class (non-GObject) C function name
ref_function_void Class (non-GObject) 0, 1
rename_to Any Type Vala Renames the identifier type to something else, ie fooFloat to float (not exactly the same as name, AFAIK name changes both the vala name and the cname. rename_to adds the required code so that when the rename_to’ed type is used, the c type is used)
replacement Anything (except parameters) The thing that replaces this Specifies a replacement for a deprecated symbol
sentinel Function (with ellipsis) C value The sentinel value marking the end of the vararg list
simple_type Struct 0, 1 Marks the struct as being a simple type, like int |
takes_ownership Parameter (Function, Delegate) 0, 1
throws Function 0, 1 Marks that the function should use an out parameter instead of throwing an error
to_string Enum C function name
transfer_ownership Function/Delegate/Signal (having a return value), Parameter Signal) 0, 1 Transfers ownership of the value
type_arguments Function/Delegate/Signal (having a return value), Property, Field, Parameter Vala types, comma separated Restricts the generic type of the thing
type_check_function Class (GObject) C function/macro name
type_id Struct, Class (GObject) C macro
type_name Function (having a return value), Property, Parameter, Field Vala type name Changes the type of the selected thing. Overwrites old type, so “type_name” must be before any other type modifying metadata
type_parameters Delegate, Class (non-GObject) Vala generic type parameters, e.g. T, comma separated
unref_function Class (non-GObject) C function name
value_owned Parameter (Function) 0, 1
vfunc_name Function C function pointer name

continues on next page

18.5. Properties Reference 101



Vala Reference Manual, Release 0.57.0.298-a8cae1

Table 1 – continued from previous page
Name Applies To Values Description
virtual Function 0, 1
weak Field 0, 1 Marks the field as weak

18.6 Examples

Demonstrating. . .

// ...

102 Chapter 18. GIDL metadata format


	Overview
	Getting started
	Documentation conventions
	Vala source files
	Vala conventions
	Vala syntax
	GType and GObject
	Memory management
	Vala compilation
	Application entry point

	Concepts
	Variables
	Local variables
	Fields
	Parameters

	Scope and naming
	Qualifying names

	Object oriented programming
	References and ownership
	Value types
	Reference types
	Pointer types


	Types
	Value types
	Struct types
	Fundamental types
	Integral types
	Floating point types
	The bool type
	Enumerated types

	Reference types
	Classed types
	Array types
	Delegate types
	Error Types
	Strings

	Parameterised types
	Nullable types
	Pointer types
	Type conversions

	Expressions
	Literal expressions
	Member access
	Element access
	Arithmetic operations
	Relational operations
	Increment/decrement operations
	Logical operations
	Bitwise operations
	Assignment operations
	Invocation expressions
	Class instantiation
	Struct instantiation
	Array instantiation
	Conditional expressions
	Coalescing expressions
	Flag operations
	Type operations
	Ownership transfer expressions
	Lambda expressions
	Pointer expressions

	Statements
	Simple statements
	Variable declaration
	Selection statements
	Iteration statements
	While Statement
	For Statement
	Foreach Statement

	Jump Statements
	Try Statement
	Lock Statement
	Unlock Statement
	With Statement

	Namespaces
	The global namespace
	Namespace declaration
	Members
	Fields
	Constants
	The “using” statement

	Methods
	Parameter directions
	Method declaration
	Invocation
	Scope
	Lambdas
	Contract programming

	Delegates
	Types of delegate
	Delegate declaration
	Using delegates
	Examples

	Errors
	Error throwing
	Error catching
	Examples

	Classes
	Types of class
	Types of class members
	Class scope
	Class member visibility
	Class declaration
	Controlling instantiation
	Construction
	Class fields
	Class constants
	Class methods
	Properties
	Declaration
	Execute Code on Setting/Getting Values
	Construct / Set Construct Block
	Notify Changes Signals
	Virtual Properties
	Abstract Properties

	Signals
	Class enums
	Class delegates
	Examples
	Using Properties
	Virtual Properties
	Abstract Properties

	Using signals


	Interfaces
	Interface declaration
	Interface fields
	Interface methods
	Interface properties
	Interface signals
	Other interface members
	Examples

	Generics
	Generics declaration
	Instantiation
	Examples

	Structs
	Struct declaration
	Controlling instantiation
	Struct fields
	Struct constants
	Struct methods
	Examples

	Enumerated types (Enums)
	Enum declaration
	Enum members
	Methods
	Flag types
	Error domains
	Examples

	Attributes
	Applying attributes
	CCode attribute
	Version attribute
	SimpleType attribute
	BooleanType attribute
	IntegerType attribute
	FloatingType attribute
	Signal attribute
	Description attribute
	DBus attribute
	Gtk attributes
	GtkTemplate attribute
	GtkChild attribute
	GtkCallback attribute

	Other attributes
	Deprecated attributes
	Examples

	Preprocessor
	Directives syntax
	Defining symbols
	Built-in defines
	Examples
	Compile and Run


	GIR metadata format
	Locating metadata
	Comments
	Syntax
	Valid arguments
	Examples
	Overriding Types
	Skipping Simbols
	More Examples


	GIDL metadata format
	Comments
	Other Lines
	Specifiers
	Specifying Different Things
	Properties Reference
	Examples


